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A B S T R A C T

Light detection and ranging (LiDAR) data have become almost ubiquitous as a remote sensing tool in forestry
estimation and mapping applications. Such initiatives commonly rely on spatially aligned forest inventory plot
measurements and LiDAR covariates to inform model-based estimators for small area estimation. There are many
examples where such linking models provide the desired accuracy and precision of forest parameter estimates for
small areas where paucity of inventory plot observations preclude design-based inference. This paper builds on
previous small area estimation (SAE) work by linking LiDAR covariates with variable radius forest inventory plot
measurements within a hierarchical Bayesian framework. Using this framework, we compare SAE of forest
aboveground biomass using: i) Fay-Herriot (FH); ii) FH with conditional autoregressive random effects (FHCAR);
and iii) FHCAR with smoothed sampling variance (FHCAR-SMOOTH) models. Candidate models and the direct
estimate based on plot measurements alone were compared using coefficient of variation (CV). On average, the
FH model reduced the CV by 52.3% compared to the direct estimate. Incorporating spatial structure via the
FHCAR model reduced the CV by 56.9% and 10.8% relative to the direct and the FH model estimates, respec-
tively. Overall, these results illustrate the applicability and utility of using a SAE framework for linking LiDAR
with typical forest inventory data.

1. Introduction

Forest inventory efforts typically follow a sampling design that aims
to cover a potentially broad range of stand conditions, e.g., capturing
species and structural diversity. Generally, a systematic grid of fixed-
area plots (FAP) or variable-radius plots (VRP) are established across
the forest. The choice between FAP or VRP depends on the inventory
objectives (Maltamo et al., 2009). A greater cost efficiency generally
results in the establishment of VRP for operational inventories over FAP
research inventories (Rice et al., 2014).

Light detection and ranging (LiDAR) data have become one of the
remote sensing tools of choice for extending and improving ground-
based forest inventories and monitoring. There has been considerable
research relating forest attributes with LiDAR covariates (see reviews
by McRoberts et al., 2010; Næsset et al., 2004). In the case of complete
LiDAR coverage, a fine grid is typically imposed on the area of interest
and LiDAR covariates are calculated using the point cloud within each
grid pixel. Often there is some effort to matching the pixel size to that of

the inventory plot, especially in the setting where a regression model is
developed to relate the LiDAR covariates to the response forest vari-
ables of interest (see, e.g., Finley et al., 2013; McRoberts et al., 2013).
Development of regression models for spatially aligned LiDAR and in-
ventory plot measurements is often referred to as unit-level analysis and
is quite common (see, e.g., Babcock et al., 2015, 2016; Finley et al.,
2017; Gregoire et al., 2016). These and similar analyses use FAP, op-
posed to VRP, because the relationship between plot extent can be di-
rectly matched with spatially coinciding LiDAR covariates. Truncated
VRP, which result in a comparable extent to FAP, used in the Finnish
National Forest Inventory have been successfully regressed on spatially
aligned LiDAR covariates (Maltamo et al., 2007), although this may not
generalize to stands with diverse diameters (Scrinzi et al., 2015).

There are examples, where VRP have been used in unit-level ana-
lyses (Hollaus et al., 2007, 2009). More recently, Hayashi et al. (2015)
and Deo et al. (2016) have applied a variety of LiDAR resolutions that
best match with the basal area factor applied in the VRP sampling. As
an alternative to a unit-level analysis, an area-level analysis can be used
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when there is spatial misalignment between LiDAR and plot measure-
ments (Goerndt et al., 2011). In an area-level regression analysis, ob-
servations are at the stand-level, whereas a unit-level analysis could
consider multiple observations within each stand. Working at the area-
level affords some advantages. For example, one can combine the cost
efficient VRP with LiDAR covariates without spatial alignment between
the plot data and LiDAR (Goerndt et al., 2011). In an effort to align VRP
measurements and LiDAR data, Kronseder et al. (2012) calculated
LiDAR covariates at a resolution of 1 ha based on the idea that VRP
measurements are expanded to a per ha basis. Additionally, van Aardt
et al. (2006) and Hudak et al. (2014) calculated the LiDAR variables at
a segment- or stand-level in which the VRP samples were established. In
this study, our focus is on application of area-level models to estimate
aboveground forest biomass (AGB), with inference at the stand-level.
The area-level models developed here are general and could be applied
to other forest variables or transformations of AGB, e.g., for use in forest
carbon accounting projects.

Given time and cost constraints, inventory designs often focus on
achieving forest-level accuracy and precision requirements, which re-
sults in a limited number of samples collected within any given stand.
These small sample sizes result in stand-level point estimate uncertainty
that is too large for practical use. This limited inference at the stand-
level, due to paucity of samples, is referred to as the small area problem
and is commonly tackled using a small area estimation (SAE) method.
We consider a forest stand to be the small area of interest for the fol-
lowing development; however, this is setting specific and one can of
course consider other small area delineations.

The key of SAE is to borrow strength across related areas to improve
estimation at the small area of interest. Rao and Molina (2015) give an
in-depth overview of SAE and cover many different approaches. Fol-
lowing the definitions of Rao and Molina (2015), SAE is divided into
three classes: i) direct; ii) indirect; and iii) small area model-based es-
timation. Direct estimators are generally design-unbiased for the area of
interest and derived directly from the sample. Model-assisted methods,
also belonging to this class, have proven useful for combining remotely
sensed data with ground observations for AGB estimation (see, e.g.,
Opsomer et al., 2007). Indirect estimators are developed based upon an
implicit model that borrows strength from either another domain, time,
or both. Several frequently applied examples of this class are synthetic
and composite estimators (Breidenbach and Astrup, 2012; Goerndt
et al., 2013, 2011). In this study, we consider the third class of SAE,
small area model-based estimation, referred to as small area models.
Small area models differ from the previous two classes by including an
explicit model with random effects that account for variation not ex-
plained by covariates in the model mean.

For small area models, the analyst applies either a frequentist or
Bayesian mode of inference. The frequentist approach uses empirical
best linear unbiased prediction (EBLUP), and the Bayesian approach
uses either empirical Bayes (EB) or hierarchical Bayes (HB). For forestry
applications, EBLUP has been applied most frequently (Breidenbach
and Astrup, 2012; Goerndt et al., 2013, 2011; Magnussen et al., 2014;
Mauro et al., 2016). Mauro et al. (2016) emphasized the correct spe-
cification of the estimator of mean squared error (MSE) of EBLUP for
different levels of aggregation, from a pixel to an entire forest. The most
common small area model is a linear mixed effects model, called the
Fay-Herriot (FH, Fay and Herriot, 1979) model, which links a direct
estimator to covariates via a linear model. Only one of the preceding
SAE forestry studies examined spatial correlations among the area-level
effects (see Appendix B in Magnussen et al., 2014). EB is considered the
Bayesian paradigm equivalent to EBLUP. Alternatively, HB methods
provide access to posterior distributions of the small area parameters
(You and Zhou, 2011), and hence parameter inference that does not
rely upon potentially unrealistic asymptotic assumptions (Pfefferman,
2013).

The primary objective of this study was to apply a HB framework to
increase the precision of estimates for mean AGB at the stand-level by
borrowing strength across all stands through the use of LiDAR covari-
ates. Additionally, we apply a conditional autoregressive structure to
the stand-level random effects to assess gains in precision of AGB. The
remainder of the manuscript follows with: i) a description of the study
area along with relevant data for the small area models; ii) a description
and implementation of the small area models; and iii) the results and
discussion of applying small area models for AGB. All source code and
data are provided to facilitate reproducible research and application of
the proposed methods.

2. Methods

2.1. Data

2.1.1. Study area
The area of interest for this study was the Noonan Research Forest

(NRF) near Fredericton, New Brunswick, Canada (N 45° 59′ 12″, W 66°
25′ 15″). The NRF has been managed by the University of New
Brunswick since 1985 and is approximately 1500 ha in size with a total
of 271 stands. The subsequent analysis uses a subset of 226 stands each
with a minimum of two VRP per stand. These stands ranged in size from
0.6 to 47 ha with an average size of 6.6 ha (Table 1; Fig. 1). The forest is
composed of hardwood, mixed, and softwood stands with the major
species being aspen (Populus spp.), balsam fir (Abies balsamea L. (Mill.)),
birch (Betula spp.), eastern white pine (Pinus strobus L.), red maple (Acer
rubrum L.), and spruce (Picea spp.), see Hayashi et al. (2015) for more
details.

2.1.2. Variable radius plot data
In 2010, a 100 x 100 m grid was laid out across the NRF. At each

grid intersection a VRP was established and trees greater than 6.0 cm
diameter at breast height (DBH) were selected into the sample using a
2 M basal area factor angle gauge. Species, DBH, and height were re-
corded for each sample tree. Plot estimates of AGB Mg ha−1 were
calculated using Jenkins et al. (2003) species-group equations. Stand-
level estimates were obtained by averaging plot-level AGB Mg ha−1

estimates. Table 1 summarizes these stand-level estimates.

2.1.3. LiDAR data
The full waveform LiDAR data were collected on October 21 and 22,

2011 using a Riegl LMS Q680i laser scanner mounted on an airplane.
The sensor had a pulse repetition frequency of 180 kHz with a laser
wavelength of 1550 nm and a scan angle < 28.54° from nadir. The
forest was covered in overlapping strips to achieve at a minimum of six
pulses per m2, footprint of 0.35 m, and up to eight returns per pulse
(Hayashi et al., 2015).

Stand-level LiDAR covariates were computed using the lascanopy
function in the LAStools software suite (Isenburg, 2016). The NRF stand
polygons, LAS files, and arguments to define the vertical extent of the

Table 1
Summary statistics for stand area, number of plots, mean aboveground biomass, sampling
variances, and LiDAR covariates for the Noonan Forest (m=226 stands) dataset.

Min Max Mean SD

Stand area (ha) 0.6 47.3 6.1 5.6
No. of plots 2 44 5.9 5.5
Mean AGB (Mg ha−1) 16.9 223.5 117.8 44.8

σi
2 0.158 7948 1698 1432

σ͠i
2 36.5 804 411 226

P25 (m) 2.2 8.4 5.2 1.3
P75 (m) 5.1 20.7 11.7 2.8
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