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A B S T R A C T

Atmospheric correction (AC) is important in pre-processing of airborne hyperspectral imagery. AC requires
knowledge on the atmospheric state expressed by atmospheric condition parameters. Their values are affected by
uncertainties that propagate to the application level. This study investigates the propagation of uncertainty from
column water vapor (CWV) and aerosol optical depth (AOD) towards abundance maps obtained by means of
spectral unmixing. Both Fully Constrained Least Squares (FCLS) and FCLS with Total Variation (FCLS-TV) are
applied. We use five simulated datasets contaminated by various noise levels. Three datasets cover two spectral
scenarios with different endmembers. A univariate and a bivariate analysis are carried out on CWV and AOD.
The other two datasets are used to analyze the effect of surface albedo. The analysis identifies trends in per-
formance degradation caused by the gradual shift in parameter values from their true value. The maximum
achievable performance depends upon spectral characteristics of the datasets, noise level, and surface albedo. As
expected, under noisy conditions FCLS-TV performs better than FCLS. Our research opens new perspectives for
applications where estimation of reflectance is so far considered to be deterministic.

1. Introduction

Hyperspectral imaging sensors record the at sensor radiance re-
flected from a surface, for hundreds of narrow contiguous spectral
bands. A recorded image can thus be seen as a three dimensional cube
with two spatial dimensions and one spectral dimension. A pixel in such
a cube usually covers an area comprising several endmembers. These
mixed pixels are in contrast with pure pixels that cover a single end-
member. The occurrence of mixed pixels is due to two main reasons: i)
the spatial resolution of a hyperspectral sensor is relatively low, thus,
several endmembers share the spatial extent of a pixel, and ii) the un-
derlying surface is a mixture of several materials.

As important information about the scene might reside in mixed
pixels, extraction of quantities of interest at the subpixel level is needed.
Spectral unmixing is a popular extraction method at the subpixel level.
It exploits spectral information to derive the endmembers in the scene,
their spectral signatures, and their fractional abundances, i.e. areas
occupied by each endmember in each pixel. For a comprehensive re-
view of unmixing techniques, see Bioucas-Dias et al. (2012) and the
references therein. In this study, we rely on the Linear Mixture Model
(LMM) (Keshava, 2003). It expresses the observed spectrum of a pixel as
a linear combination of the spectra of the endmembers weighted by

their fractional abundances.
Spectral unmixing using the recorded radiance is challenging in the

presence of the Earth atmosphere. This is primarily because of the in-
teraction of the surface reflected radiation with the atmospheric con-
stituents while propagating along the path from the target surface to the
sensor (Verhoef and Bach, 2003). The interaction generates two main
atmospheric effects: absorption by atmospheric gases in particular
water vapor and ozone and aerosols in the visible and near-infrared
spectral range and scattering by aerosols and molecules (Lenoble,
1998). In addition, on the path of the beam to the sensor, reflection by
the surrounding area of the target pixel and radiance backscattered by
the atmosphere that did not interact with the surface distorts the at
sensor radiance.

An Atmospheric Correction (AC) algorithm retrieves the surface
reflectance from the at sensor radiance. AC algorithms can be divided
into scene based empirical algorithms and algorithms based on radia-
tive transfer modeling. We use the latter, as it is a mature approach for
routine processing of hyperspectral image data (Gao et al., 2006).

In radiative transfer modeling, the target radiance can be derived
assuming a plane-parallel geometry of the atmosphere, whereas the
viewing and illumination geometry and total optical depth of the at-
mosphere are known. For a reliable estimate of reflectance, the
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concentration of the atmospheric scatters and absorbers, i.e. the optical
parameters, should be available at the time of imaging. In this paper,
we analyze the effect of uncertainty in estimations of atmospheric
aerosol optical depth (AOD) and column water vapor (CWV). Both CWV
and AOD are highly varying in space and time. Thus, they are estimated
directly from satellite or airborne (remote) observations. With knowl-
edge of CWV and AOD, transmission of radiation through the atmo-
sphere can be simulated.

Estimation of CWV from at sensor radiance consists of identification
of the measurement channels, identification of reference channels, and
using a relation between reference and measurement channels (Carrere
and Conel, 1993). These methods are limited with respect to several
assumptions. First, surface reflectance is assumed to vary with wave-
length in a linear way; second, the effect of sensor noise is often not
considered, and third, uncertainty emerging from instrument char-
acterization is ignored (Rodger, 2011; Qu et al., 2003).

Estimation of AOD consists of determining aerosol radiative prop-
erties characterized by their shape, their size, their chemical composi-
tion, and total amount (Diner et al., 2005). The MODIS science team
(Remer et al., 2005) has developed the dense dark object method to
estimate AOD that is further developed in Richter et al. (2006). The
limitation of such methods is their suitability for pixels with dense
vegetation. For scenes with dark pixels that are clustered at a few lo-
cations, pixelwise estimation of AOD is challenging. Besides, at sensor
based inference of AOD is adversely affected by noise of at sensor ra-
diance.

These assumptions and limitations, reasonable as they are, cause
uncertainty in the estimation of CWV and AOD which likely propagates
to reflectance estimates.

The objective of this paper is to analyze the impact of uncertainty in
unmixing caused by CWV and AOD, given their specific influence on the
estimated reflectance spectra. A basic hypothesis of unmixing is that the
estimated reflectance spectra are free from atmospheric artefacts. By
ignoring uncertainty in the AC parameters, however, it is likely that this
hypothesis is violated. The paper specifically focuses on an operational
processing chain. The operational processing chain is implemented in
the multi-mission Processing, Archiving, and distribution Facility (PAF)
for Earth observation products (Richter, 2007). Experiments in this
paper are performed using the PAF incorporated in the Central Data
Processing Center (CDPC) (Biesemans et al., 2007) at the Flemish In-
stitute for Technological Research.

2. Theoretical background

2.1. Basic atmospheric effect modeling

The fraction (ρt) of the total irradiance at the surface (Eg) reflected
by the earth surface depends upon the type of surface, illumination (θs),
viewing geometry (θv), and wavelength (λ). On the path of the beam to
the sensor other radiation components are added to the radiance re-
flected by the surface (Lt(λ)) due to atmospheric scattering. We dis-
tinguish four contributions to the at sensor radiance (Lrs,t(λ)):

= + + +L λ L λ L λ L λ L λ( ) ( ) ( ) ( ) ( ).brs,t t pa pb (1)

Lt(λ) contains the target surface information, Lpa(λ) and Lpb(λ) are
path radiance and background path radiance, respectively, that enter
the IFOV of the sensor due to scattering, and Lb(λ) is the background
radiance, or adjacency effect, being the average radiance of the sur-
rounding surface.

For a target surface with reflectance ρt(λ) and background re-
flectance ρbck(λ), the background path radiance, background radiance,
and target radiance are:

= +L λ
π

ρ λ T τ θ λ E λ( ) 1 ( ) ( , , ) ( ),vpb bck tot g (2)

= +L λ
π

ρ λ T τ θ λ E λ( ) 1 ( ) ( , , ) ( ),vb bck dir g (3)

= +L λ
π

ρ λ T τ θ λ E λ( ) 1 ( ) ( , , ) ( ),vt t dir g (4)

where +Ttot expresses the total upward transmittance, which is further
subdivided in direct transmittance +T( )dir and diffuse transmittance
(Haan and Kokke, 1996). Let the residual terms in Eq. (1) be denoted
by:

= + +L λ L λ L λ L λ( ) ( ) ( ) ( ).rs,b pa pb b (5)

Then the background reflectance can be retrieved using
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with
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where S is the spherical albedo for illumination from below of the at-
mosphere and −Ttot expresses the total downward transmittance. Sub-
stituting the expression for ρbck(λ), the target reflectance equals
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The basic atmospheric effect model is well described in Gao et al.
(2009). We use MODTRAN 4 (Berk et al., 2000) to estimate the radiance
components in Eq. (7). It computes absorption and scattering in the
terrestrial atmosphere at high spectral resolution and is treated below
as a black box. It allows one to pixelwise solving the DIScrete Ordinate
Radiative Transfer (DISORT) (Stamnes et al., 1988) for accurate com-
putations of atmospheric multiple scattering. In an operational pro-
cessing chain, however, the considerable execution time to do so is a
problem. Therefore, MODTRAN 4 is executed for a uniform Lambertian
surface reflectance with a spectrally flat surface albedo of App=0,
App=0.5, and App=1.0. In this way, the various radiance components
for a given atmospheric state and angular geometry are determined.
This is the MODTRAN interrogation technique that has been used in
operational processing chains to derive the same radiance component
as in Eq. (7) (Verhoef and Bach, 2003; Sterckx et al., 2016). MODTRAN
4 provides four radiance components:

1. The total radiance as measured by the sensor, Lrs,t(λ),
2. The total path radiance Lpath(λ) that consists of the light scattered in

the path,
3. The total ground radiance that consists of all the light reflected by

the surface and traveling directly towards the sensor, Lgnd(λ),
4. The direct ground reflectance, Ldir(λ) as a fraction of Lgnd(λ) re-

sulting from direct illumination of the ground surface.

The four components are then combined using Eq. (7).

2.2. The linear mixture model (LMM) and unmixing methods

Let y ∈ℝB be the reflectance spectrum of one pixel, where B is the
number of spectral bands. According to the LMM, it can be expressed as
a linear combination of the spectra of the endmembers, weighted by
their fractional abundances:

= ⋅ +y A x n. (8)

Here, A ∈ℝB×m is the set of endmembers in the scene serving as a
spectral library containing m pure spectra, x ∈ℝm is the vector of cor-
responding fractional abundances compatible with A, and n ∈ℝB is a
noise vector. In this paper, we assume that A is available a priori.
Unmixing thus aims at identifying the atoms of A which are active in
each pixel and their respective abundances. To solve Eq. (8), we
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