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A B S T R A C T

The three-component model of Brewin et al. (2010) computes fractional contributions of three phytoplankton
size classes (micro- (> 20 μm), nano- (2–20 μm), picophytoplankton (< 2 μm)) to the overall chlorophyll a
concentration (Chla). Using in situ pigment data, model coefficients were adjusted for application to the southern
African marine region. The refined model was applied to seasonal and monthly climatologies of MODIS Aqua
Chla around Southern Africa. Chla> 1 mg m−3 was limited to shelf regions along the coasts of Southern Africa
and Madagascar, while values< 0.1 mg−3 were found over most of the open ocean between the equator and
38°S during austral summer and autumn. In winter and spring, low values (< 0.1 mg m−3) were restricted to
smaller regions within subtropical gyres, while values up to 0.7 mg m−3 extended over a much greater area of
the open ocean. Shelf regions in the northern (NB) and southern Benguela (SB), Agulhas Bank (AB), Agulhas
region (AR), and Mozambique Channel (MC) all showed similar seasonal cycles of size structure. On average,
microphytoplankton comprised> 50% of the total Chla in these regions with little change throughout the year.
The AR shelf differed, with picophytoplankton dominating in summer, and micro- and nanophytoplankton the
rest of the year. In the open ocean domains of the NB, SB, and AB regions, nanophytoplankton dominated for
most of the year, with picophytoplankton being more prevalent during summer and autumn. In contrast, in the
AR open ocean, nanophytoplankton were dominant only during winter and early spring, whereas picophyto-
plankton dominated throughout the year in the MC open ocean. The refined model characterised previously
unknown spatial and temporal changes in size structure in various ecosystems around Southern Africa.

1. Introduction

Phytoplankton play a critical role in a number of key marine pro-
cesses, including the modulation of food webs, CO2 exchanges, and the
cycling of carbon and other nutrients such as nitrate, phosphate, and
silicate. The size distribution of phytoplankton has a strong influence on
community structure, physiology, metabolism, and the trophic organi-
sation of the pelagic ecosystem (Chisholm, 1992). Partitioning phyto-
plankton communities according to size provides a more detailed and
integrative means of investigating phytoplankton structure and func-
tion in relation to key physical processes and biogeochemical cycles
(IOCCG, 2014). Communities dominated by large-sized phytoplankton
have the potential to export organic matter, through a short food chain,
to the seabed or transfer it to upper trophic levels and to neighbouring
regions, while communities predominated by small-sized

phytoplankton are mainly characterised by complex microbial food
webs that favour recycling of organic matter within the euphotic zone
(Cermeño et al., 2006). Although large-sized phytoplankton can sustain
higher rates of photosynthesis (Cermeño et al., 2006), small-sized
phytoplankton are an important fraction (35–60%) of the total biomass
and may account for over 50% of daily primary production in oligo-
trophic regions and 25–30% in more productive coastal regions (Platt
et al., 1983; Tremblay and Legendre, 1994; Marañón et al., 2001).

The marine region around Southern Africa hosts a complex inter-
play between a number of major oceanic systems including the
Benguela upwelling system, the greater Agulhas Current system, and
the Southern Ocean, and plays a key role in the global ocean circulation
and biogeochemical cycling (Hutchings et al., 2009; Lutjeharms, 2006).
On the west and south coasts of Southern Africa, the Benguela upwel-
ling system and the Agulhas Bank have ecological and economic
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significance for driving a very productive ecosystem which supports a
complex trophic structure and a multitude of commercially harvested
resources (Hutchings et al., 2009; Verheye et al., 2016). Most of the
primary production in this ecosystem can be attributed to micro-
phytoplankton dominated communities, but nanophytoplankton
dominated communities are also known to be important due to their
larger spatial extent (Hirata et al., 2009).

Located on the east and south coasts of Southern Africa, the Agulhas
Current system feeds the upper limb of the Atlantic meridional over-
turning circulation through the flow of warm, saline surface waters
from the Indian Ocean to the Atlantic Ocean (Lutjeharms, 2006). The
Agulhas ecosystem and Mozambique Channel are characterised as oli-
gotrophic, where mainly nano- and picophytoplankton dominate in the
surface layers further offshore, with microphytoplankton being more
important in the shelf regions (Barlow et al., 2010; Sá et al., 2013).
Located south of the African continent, the Southern Ocean plays a
critical role in regulating the global organic carbon flux and modulates
nutrient supply to thermocline waters, which in turn drives pro-
ductivity in the lower latitudes (Sarmiento et al., 2004; Schlitzer,
2002). The Southern Ocean is unique in that it has high nutrient con-
centrations and low phytoplankton biomass, with high spatial and
temporal variability (Thomalla et al., 2011a). These extremely different
environments provide a good opportunity to investigate seasonal var-
iations in phytoplankton biomass and size structure under varying en-
vironmental conditions.

With decreasing opportunities and continually rising costs asso-
ciated with the collection of in situ data, research efforts globally have
become more focussed on the use of satellite data and models to elu-
cidate oceanographic processes and variability (IOCCG, 2014). In re-
cent years, the use of satellite ocean-colour data has been extended to
the derivation of phytoplankton functional types and size classes, with
the aim of improving our understanding of oceanic biogeochemical
cycles. A number of different abundance-based, spectral-based, and
ecological approaches to determine phytoplankton size classes (PSC)
have been developed and implemented (Brewin et al., 2010; Hirata
et al., 2009; Uitz et al., 2006, among others). Although Brewin et al.
(2011) highlighted the need for continued and improved in situ data
availability to further improve the estimation of satellite-derived PSCs,
their initial comparison indicated that the various models performed
with similar accuracy. While these models have been applied globally,
there have been relatively few models tuned for regional applications,
and none for around Southern Africa. One approach that has been
successfully tuned to different regions is the three-component model of
Brewin et al. (2010), including: the Atlantic Ocean (Brewin et al., 2010;
Brewin et al., 2014); the eastern Atlantic Ocean (Brotas et al., 2013);
the Indian Ocean (Brewin et al., 2012); the South China Sea (Lin et al.,
2014); the Western Iberian coastline (Brito et al., 2015); the Medi-
terranean Sea (Sammartino et al., 2015); the Red Sea (Brewin et al.,
2015a); as well as the global ocean (Brewin et al., 2015b; Ward, 2015).
The primary goals of this study are to: (1) refine the parameterization of
the Brewin et al. (2010) model for regional application to the marine
environment around Southern Africa; (2) to use the model to identify
the dominant size class; and (3) describe previously unknown seasonal
and spatial variations in Chla and phytoplankton size structure in this
region.

2. Data and methods

2.1. Re-tuning of the Brewin et al. (2010) model

Brewin et al. (2010) developed an abundance-based PSC model to
estimate the Chla concentrations of three phytoplankton size classes
(micro- (> 20 μm), nano- (2–20 μm), and picophytoplankton
(< 2 μm)), as a function of the total Chla concentration (C). The model
is based on two exponential functions (Sathyendranath et al., 2001),
where the chlorophyll concentration of picophytoplankton (denoted Cp)

and combined nano-picophytoplankton (denoted Cp,n) are computed as:

= −C C exp S C[1 ( )],p p
m

p (1)

and

= −C C exp S C[1 ( )],p n p n
m

p n, , , (2)

where the parameters Sp, n and Sp determine the initial slope between
size-fractionated chlorophyll and total chlorophyll (denoted C in the
Eqs. (1) and (2)), and Cp

m and Cp, n
m determine the asymptotic max-

imum values for the two size-classes. Once Cp, n and Cp are obtained,
nanophytoplankton chlorophyll (denoted Cn) and microphytoplankton
chlorophyll (denoted Cm) can be computed as Cn=Cp, n−Cp and
Cm=C−Cp, n. The fractions of each size class (Fp, Fn and Fm) can then
be computed by dividing the size-fractionated chlorophyll (Cp, Cn and
Cm) by total chlorophyll (C).

The original global model was parameterized using coefficients
determined from refined relationships between HPLC (High
Performance Liquid Chromatography)-derived biomarker pigments and
the total Chla (Uitz et al., 2006), and linking specific biomarker pig-
ments to each size class following Uitz et al. (2006), with further re-
finements as proposed by Brewin et al. (2010) and Devred et al. (2011).
Details of the development, parameterisation and application of the
model are described in Brewin et al. (2015b). Application of the model
to satellite data has been extensively validated with independent in situ
data in a variety of marine environments (Brewin et al., 2010; Brewin
et al., 2012; Brewin et al., 2015b; Lin et al., 2014).

Here, we regionally-tuned the global model using HPLC data col-
lected in the Southern African marine region (Fig. 1). This included
data from: the BEAGLE cruise (November–December 2003; Barlow
et al., 2007); the Atlantic Meridional Transect (AMT) cruises 6, 15, 16,
and 17 (May 1998, October 2004, May 2005, November 2005; Brewin
et al., 2010); the Agulhas ecosystem and Tanzania (November 2006,
August–October 2007; Barlow et al., 2008; Barlow et al., 2011); the
Mozambique Channel (November–December 2008, October–November
2009, April–May 2010; Barlow et al., 2014); Version 2.0 ALPHA of the
NASA bio-Optical Algorithm Dataset (October 2002; Werdell and
Bailey, 2005), following the removal of any AMT data so as to avoid
duplication; and a cruise in the Atlantic sector of the Southern Ocean
(February–March 2009; Gibberd et al., 2013). Only samples in the top
20 m of the water column were used (within the surface mixed-layer,
rarely< 20 m, de Boyer Montégut et al., 2004), and where the differ-
ence between Chla and the total accessory pigments was< 30% of the
total pigment concentration (Aiken et al., 2009; Brewin et al., 2015b).
In total, 407 samples were available and Fig. 2a shows the spatial
distribution and number of samples for each dataset.

Following the methods described in Brewin et al. (2015b), size-
fractionated chlorophyll (Cp, Cn and Cm) was estimated from the HPLC
pigment data. The total chlorophyll concentration was estimated from
the weight of seven diagnostic pigments (Uitz et al., 2006), and then the
fractions of chlorophyll in each size class were estimated. The fraction
of picophytoplankton chlorophyll (Cp) was computed using zeaxanthin,
total chlorophyll b, and by allocating part of the 19′-hexanoylox-
yfucoxanthin pigment to the picophytoplankton pool at total chlor-
ophyll concentrations ≤0.08 mg m−3. The nanophytoplankton chlor-
ophyll fraction (Cn) was estimated using 19′-hexanoyloxyfucoxanthin,
19′-butanoyloxyfucoxanthin, alloxanthin, and by apportioning some of
the fucoxanthin pigment to the nanophytoplankton pool, using the
method of Devred et al. (2011). The microphytoplankton chlorophyll
fraction (Cm) was estimated using the remaining fucoxanthin (that was
attributed to the micro size class) and peridinin as diagnostic pigments
(Devred et al., 2011; Brewin et al., 2015b).

Samples were matched to daily, level 3 (4 km binned) satellite
chlorophyll data, from MODIS-Aqua v2014.0 (downloaded from the
Ocean Biology Processing Group (OBGP) at NASA's Goddard Space
Flight Center (GSFC)). Each in situ sample was matched in time (daily
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