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A B S T R A C T

A major issue in land cover mapping is classifier selection. Here we investigated classifier performance under
different sample sizes, reference class distribution, and scene complexities. Twenty six 10 km × 10 km blocks
with complete reference information across the continental US are used. Per-pixel classification took place using
six spectral bands from Landsat imagery. The tested classifiers included Naïve Bayes (NB), Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), Bootstrap-aggregation ensemble of decision trees (BagTE), artificial
neural network up to 2 hidden layers, and deep neural network (DNN) up to 3 hidden layers. For the entire
block, our accuracy assessment indicated that all classifiers, with the exception of NB (a Maximum Likelihood
variant), performed similarly. However, when we concentrated on edge pixels (pixels at the border of adjacent
land cover classes), it was clear that the SVM and KNN offer considerable accuracy advantages, especially for
larger reference datasets. Because of their relatively low execution times SVM and KNN would be recommended
for classifications using Landsat's spectral inputs and Anderson's 11-level classification scheme. However, both
SVM and KNN demonstrated substantial accuracy degradation during the parameter grid search. For this reason,
an exhaustive parameter optimization process is suggested. While the ANN and DNN neural network variants did
not perform as well, their performance may have been restricted by the lack of rich contextual information in our
simple six band per-pixel input space. The effect of class distribution in the training dataset was also evident on
the calculated accuracy metric. Gradual accuracy degradation as edge pixel presence increased was also ob-
served. Future work could focus on data-rich classification problems such as change detection using Landsat
stacks or expand in high spectral or spatial resolution sensors.

1. Introduction

Classification of remotely sensed data is essential in generating
thematic maps. Thematic maps have many applications in environ-
mental management, agricultural planning, health studies, climate and
biodiversity monitoring, and land change detection (Khatami et al.
2016). A wide range of regional and global datasets for classification
are currently available, facilitating studies at unprecedented scales
(Grekousis et al. 2015). The classification process, in general, is com-
posed of different tasks, from the selection of data source and sampling
design, to classification method selection and classifier performance
evaluation (Lu and Weng 2007). Although all of these tasks are im-
portant and their successful implementation is dependent on each
other, a major task is the selection of a suitable classification method.

One type of classification method may be more suitable for a

specific target objective, problem condition, or imaging details over
another method (see Table 1 in Lu and Weng 2007). The classifiers
performance assessment is also highly dependent on data quality, data
values distribution, and sampling design (Jin et al. 2014; Li et al.
2014a); and it can also be evaluated under various criteria like accu-
racy, reproducibility and/or robustness (Cihlar et al. 1998). Even for
the most widely used assessment criteria for classification accuracy,
there are important concerns that limit the ability to properly assess the
accuracy of resulting map (see Foody 2002, for a review). This line of
research has been followed by more recent papers discussing the pro-
blems arising from increasing accuracy degradation over time in tem-
poral land cover analysis and change detection (Giles M. Foody 2010),
or stressing the importance of sample size or statistical hypothesis
testing when comparing different classifiers or scenarios performance
(Giles M. Foody 2009).
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Therefore, it is difficult to generate a general statement to advise on
classifiers ranking. One should always declare the specific conditions
that the classifier performance assessment is based on. There are good
review papers that introduce the classifiers in general and discuss their
application conditions, strengths and weaknesses (Lu and Weng 2007;
C. Li et al., 2014; X. Li et al., 2014), but they are mostly qualitative
without specific quantitative results for example, best attainable clas-
sifiers accuracy. Other papers discuss classifiers for certain problem
types. For example, see (Weng 2012) for a discussion on classifiers for
mapping of impervious surfaces, (Mallinis and Koutsias 2012) for a
comparison of ten classifiers for burned area mapping, (J. He et al.
2015), for comparing four main classifiers in generation of arctic geo-
logical maps, or (Pelletier et al. 2016) for assessing the robustness of
random forest (RF) classifier for a specific area. Still, other researchers
seek to review the application of a specific classifier in more detail. For
example, see (Mountrakis et al. 2011) for a review of SVM classifiers;
(Pal and Mather 2003), for an assessment of decision tree methods for
land use classification; or (Belgiu and Drăguţ 2016), for an overview of
random forest classifier. Additional processing is another focus of re-
search which includes making ensemble of classifiers (X. Li et al. 2014),
controlling of misclassification by post-processing (Marcos Martinez
and Baerenklau 2015), or using ancillary data to aid in classification by
field visits (Meddens et al. 2016) or other sources and sensors (Zhu
et al. 2016). Based on numerous case studies, one can perform a meta-
analysis of previously researched cases and assess the comparative re-
sults of case studies at a higher level. This meta-analysis has been done
for a single type of classifier such as KNN (Chirici et al. 2016), or more
general including pairwise comparisons among many classifiers
(Khatami et al. 2016).

While fragmented comparisons between traditional classifiers can
be found in existing literature, they are limited in terms of: i) number of
case studies incorporated, ii) the search space of the classifier

parameters (often resorting to default values), and iii) absence of a
promising new classification family based on deep neural networks
(DNN). To the best of our knowledge, there are just a few studies that
investigate per-pixel classifier accuracy performance over multiple case
studies or over a large area. For example, (Ballantine et al. 2005) per-
formed mapping for continental North Africa using MODIS data but
comparisons were restricted to a few classifiers. In (Gong et al. 2013) a
global sampling and classification was implemented using four different
classifiers, but they used a fixed set of parameters for each classifier.
Similarly, (Lawrence and Moran 2015) tested classification accuracy for
multiple classifiers for 30 data sets but they used a fixed set of classifier
parameters that did not allow classifiers to reach their best potential.
(Pelletier et al. 2016) performed a grid search on classifier parameters
over two large areas in France, focusing on SVM and Random Forest
classifiers. Finally, W. Li et al. (2016) employed numerous popular
classifiers plus the new autoencoder-based DNN implementations over
one composite set sampled through the entire Africa, but they only
reported a fixed parameter set (except for DNN).

Our research goals fill this gap by overcoming the three aforemen-
tioned limitations. Along these lines, we: i) compared classifiers' best
achievable accuracy, ii) identified the accuracy costs associated with
the reduction of the parameter grid and training dataset size and iii)
investigated how landscape heterogeneity influences classifier perfor-
mance. We tested six different classifiers in our research: Naïve Bayes
(NB), Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
Bootstrap-aggregation ensemble of decision trees (BagTE), artificial
neural network (ANN) up to 2 hidden layers, and autoencoder-based
deep neural network (DNN) up to 3 hidden layers. We used a dataset of
26 Landsat images for classifiers comparison, and ran each classifier
with a grid of parameter settings to evaluate its performance.

Table 1
Classifiers parameters

Classifier Parameter Parameter values/range

Naïve Bayesian (NB) Probability distribution type Normal, Kernel
Smoothing function Normal, Box, Triangle, Epanechnikov

K-Nearest Neighbor
(KNN)

Distance metric Chebychev, Euclidean, Mahalanobis, Minkowski
Distance weight Inverse, squared inverse
Number of neighbors 1 to 40 (step of 2)

Support Vector
Machine (SVM)

Kernel function Fixed at Gaussian
Box constraint (C) 0.01, 0.1, 0.5, 1, 2, 5, 10, 25, 50, 100, 300
Kernel scale (gamma) 0.1, 0.5, 1, 2, 5, 10, 25, 50

Tree ensemble
(BagTE)

Ensemble method Bagging
Number of trees 50, 100, 200, 500
Maximum number of tree splits 10, 25, 50, 100, 200
Minimum tree leaf size 1, 3, 5, 10, 25
Number of simulation iterations 10

Artificial Neural
Network
(1 or 2 hidden layers,

Training algorithm Resilient backpropagation (trainrp)
# of nodes in 1st hidden layer 5 to 15 (step of 1)
# of nodes in 2nd hidden layer 0 to 8 (step of 1)

followed by a softmax classifier) Number of simulation iterations 100
Training parameters (specific to chosen training algorithm):

- Learning rate
- Delta0
- Delta_inc
- Delta_dec

Changed randomly in each iteration within given range:

- 0.01–1
- 0.01–0.5
- 1–5
- 0.1–1

Deep Neural Network, autoencoder-based
(1, 2, or 3 hidden layers, followed by a softmax
classifier)

Training algorithm Standard backpropagation
# of nodes in 1st hidden layer 5 to 30 (step of 2)
# of nodes in 2nd hidden layer 0 to 20 (step of 2)
# of nodes in 3rd hidden layer 0 to 10 (step of 2)
Number of simulation iterations 100
Training parameters (specific to chosen training algorithm):

- Lambda
- Rho
- Beta

- 1E-8–1E-3
- 0.05–0.7
- 1–9
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