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ABSTRACT

The ever-increasing volume and accessibility of remote sensing data has spawned many alternative approaches
for mapping important environmental features and processes. For example, there are several viable but highly
varied strategies for using time series of Landsat imagery to detect changes in forest cover. Performance among
algorithms varies across complex natural systems, and it is reasonable to ask if aggregating the strengths of an
ensemble of classifiers might result in increased overall accuracy. Relatively simple rules have been used in the
past to aggregate classifications among remotely sensed maps (e.g. using majority predictions), and in other
fields, empirical models have been used to create situationally specific algorithm weights. The latter process,
called “stacked generalization” (or “stacking”), typically uses a parametric model for the fusion of algorithm
outputs. We tested the performance of several leading forest disturbance detection algorithms against ensembles
of the outputs of those same algorithms based upon stacking using both parametric and Random Forests-based
fusion rules. Stacking using a Random Forests model cut omission and commission error rates in half in many
cases in relation to individual change detection algorithms, and cut error rates by one quarter compared to more
conventional parametric stacking. Stacking also offers two auxiliary benefits: alignment of outputs to the precise
definitions built into a particular set of empirical calibration data; and, outputs which may be adjusted such that
map class totals match independent estimates of change in each year. In general, ensemble predictions improve
when new inputs are added that are both informative and uncorrelated with existing ensemble components. As
increased use of cloud-based computing makes ensemble mapping methods more accessible, the most useful new
algorithms may be those that specialize in providing spectral, temporal, or thematic information not already
available through members of existing ensembles.

1. Introduction

processes has a profound effect on how ecosystems function, affecting
biogeochemical (Chambers et al., 2007; Kurz et al., 2009) and hydro-

1.1. The challenge of mapping subtle forest cover loss logical cycles (Seilheimer et al., 2013), habitat conditions (Spies et al.,

2010), and availability of social and economic human benefits

Land cover change due to both human and natural disturbance (Gonzélez-Olabarria and Pukkala, 2011). Characterization of land cover
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Fig. 1. Topologies of commonly used MCS. Fuser functions
may either use a combination rule, such as voting or
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averaging, which requires only classifier outputs (panel a),
or they may call upon features from a learning dataset to
facilitate weighting of outputs on the basis of model per-
formance (panel b). This second approach has been termed
“stacking.”

Decision Figure adapted from Wozniak et al. (2014).
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change has therefore emerged as a discipline with a central bearing on
many fields of study (Turner et al., 2007). The Landsat platform has
been a primary source of land change information, capable of detecting
important vegetative and disturbance patterns because of the sensor's
long history and appropriate temporal, spatial, and spectral properties
(Cohen and Goward, 2004). The Sentinel and SPOT platforms have also
proven useful for this task (e.g., (Antropov et al., 2016; Li et al., 2016;
Verhegghen et al., 2016)). The free release of all images in the Landsat
archive (in 2008) has led to the development of many new algorithms
capable of using temporally dense observations to increase the breadth,
accuracy, and precision of land cover change characteristics that can be
mapped (Wulder et al., 2012).

However, like most remote sensing problems, there are many factors
that can increase the complexity of detecting forest change, particularly
beyond the relatively straightforward stand-replacing disturbances
targeted in earlier efforts (e.g. Healey et al., 2008). Cohen et al.'s (2016)
national survey of forest disturbance processes found that low-magni-
tude forest decline was the most common cause of disturbance, parti-
cularly in the Western US. Likewise, US Forest Service inventory data
indicates that partial harvests are more commonly practiced than
clearcuts across the country (Smith et al., 2009), and the inter-agency
Monitoring Trends in Burn Severity project (Schwind et al., 2010)
found that only 36% of the area burned by 13,400 large fires in the US
between 1985 and 2010 had moderate or greater severity (Finco et al.,
2012). For any given low-magnitude disturbance, subtle removals of
forest canopy may increase spectral reflectance in both the visible and
mid-infrared wavelengths if removal of vegetation reveals brighter
soils, but reflectance may actually decrease if canopy removal increases
the contribution of shadowing to the spectral signal or if charring oc-
curs (Schroeder et al., 2011). Consistency of spectral response across
space and time may also be compromised by phenology, atmosphere,
topography, soil type, forest type, and forest structure.

There are several change detection algorithms which target lower-
magnitude change (e.g. (DeVries et al., 2015; Healey et al., 2006; Meigs
et al., 2015)) in very specific scenarios, but it is an open question if
Landsat or other remote sensing platforms can be used across complex
landscapes to detect the full range of disturbance magnitudes and types
without also introducing detrimental levels of false-positive (i.e.,
commission) error. It should be noted that while the term “change

detection” is used here for the process of mapping forest disturbance,
that process is very much subject to error and actually represents a
prediction of change more than a definitive discovery. The more ac-
curate “change prediction” is not used here both because of convention
and to distinguish the current monitoring task from work involved with
assessment of future events (e.g. (Seidl et al., 2014).

1.2. Multiple classifier systems

This paper presents a test of the idea that an ensemble of change
detection algorithms can be used together to obtain forest disturbance
maps of greater accuracy and sensitivity than maps from any single
automated algorithm. Wolpert and Macready (1997) demonstrated, in
their “No Free Lunch” theorems, that if an algorithm performs well in
one class of problems, it necessarily “pays” for that accuracy with de-
graded performance on a set of all remaining problems. If different
algorithms have different specialties, particularly if those specialties are
diverse, combination of those algorithms in Multiple Classifier Systems
(MCS) should improve global performance (Oza and Tumer, 2008). We
use the term “classifier” to refer to any generalizing algorithm or model
that produces a hypothesis about an object using a set of learning data.
A variety of tools have been used as classifiers across disciplines, from
logistic regression to nearest neighbor imputation and support vector
machine methods (e.g. (Séez et al., 2013); (Kavzoglu et al., 2014)), and
this paper focuses on a variety of algorithms that make use of time
series analysis with Landsat imagery.

Analytical approaches based on MCS now play an important role in
tasks ranging from detecting computer security risks to diagnosing
disease (Wozniak et al., 2014). This paper focuses on a class of MCS
which applies an ensemble of classifiers to a problem simultaneously
and then uses a fusion rule to employ a meta-classification process.

Fig. 1 illustrates two types of fusion rules: one which uses a simple
combination rubric such as an average or majority (a), and one which
uses a secondary model to re-weight the classifiers according to their
performance against similar cases in the reference data (b). Random
Forests (RF; (Breiman, 2001)) is a prominent example of an MCS which
uses a combination rule. RF creates an ensemble of similar classifiers by
training decision tree-based models with random partitions of the input
data, a process called “bagging” (Breiman, 1996a). An RF prediction is
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