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A B S T R A C T

Lidar transforms how we map ecosystems, but its prospect for measuring ecosystem dynamics is limited by
practical factors, such as variation in lidar acquisition and lack of ground data. To address practical use of
multitemporal lidar for forest and carbon monitoring, we conducted airborne lidar surveys four times from 2002
to 2012 over a region in Scotland, and combined the repeat lidar data with field inventories to map tree growth,
biomass dynamics, and carbon change. Our analyses emphasized both individual tree detection and area-based,
grid-level approaches. Lidar-detected heights of individual trees correlated well with field values, but with
noticeable underestimation biases (r = 0.94, bias =−1.5 m, n = 598) due to the increased probability of
missing treetops as pulse density decreases. If not corrected for such biases, lidar provided unrealistic or wrong
estimates of tree growth unless laser sampling rates were high enough (e.g., > 7 points/m2). Upon correction,
lidar could detect sub-annual tree growth (p-value < 0.05). At grid levels, forest biomass density was reliably
estimated from area-based lidar metrics by both Random Forests (RF) and a linear functional model (r > 0.86,
RMSEcv < 21 Mg/ha), irrespective of laser sampling rates. But RF constantly overfit the data, often with poorer
predictions. The better generality of the linear model was further confirmed by its transferability—fitted for one
year but applicable to other years—a strength not possessed by RF but desired to alleviate the reliance on ground
biomass data for model calibration. Resultant lidar maps of forest structure captured canopy dynamics and
carbon flux at fine scales, consistent with growth histories and known disturbances. The entire 20-km2 study area
sequestered carbon at a rate of 0.59 ± 0.4 Mg C/ha/year. Overall, our study describes robust techniques well
suited for multitemporal lidar analysis and affirms the utility and potential of repeat lidar data for resource
monitoring and carbon management; however, the full potential cannot be attained without the support of
accompanying field surveys or modeling efforts in enhancing stakeholders' trustworthiness of lidar-based in-
ference.

1. Introduction

Forests supply timber, shelter wildlife, store carbon, and regulate
climate, among others (Bonan, 2008; Zhao and Jackson, 2014).
Managing forests to sustain their benefits requires effective tools to
monitor landscapes over time. Ground-based tools are valuable but
with limited spatial footprints (West and West, 2009). This limitation
has been addressed with the use of remote sensing, especially in
meeting the growing demands for spatially-explicit forest maps to track
forest loss and degradation and quantify terrestrial carbon pools (Goetz
et al., 2015). Of current mapping technologies, airborne lidar features
prominently, due to its superior ability to resolve 3D vegetation

structure (Vierling et al., 2008). Since its advent, lidar has been often
acclaimed as a breakthrough in the field of vegetation remote sensing
(Babcock et al., 2015; Dubayah and Drake, 2000).

Over 50 years of research has demonstrated the utility of airborne
lidar for natural resource assessment (Nelson, 2013). Existing lidar
systems vary in laser type, footprint, data-recording, spectral specifi-
cation, or operation mode (García et al., 2012; Shan and Toth, 2008).
Our focus here is a most common system: small-footprint discrete-re-
turn single-band analog laser scanners (i.e., airborne laser scanning) or
simply, airborne lidar. Empirical evidence continues to proliferate to
prove the exceptional value of airborne lidar for measuring forest at-
tributes and ecosystem structure with accuracies unattainable by its
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conventional counterparts (Coomes et al., 2017; García et al., 2015;
Mutlu et al., 2008; Véga et al., 2016). Given its proven capabilities, the
use of airborne lidar for 3D mapping is increasing rapidly around the
world (Goetz et al., 2010; Zolkos et al., 2013). Many countries, such as
Denmark, Finland, and Spain, even have national-level data acquisi-
tions completed or in progress (Stoker et al., 2008), some of which are
repeat surveys.

Increased use and availability of lidar data provide opportunities to
measure and study ecosystem dynamics over time (Dubayah et al.,
2010; Réjou-Méchain et al., 2015). This prospect is further boosted as
lidar data costs are declining, data processing is becoming more stan-
dardized, and the lidar user base is expanding (Schimel et al., 2015;
Stoker et al., 2008). Accompanying the prospect are also the increasing
demands for high-resolution ecosystem dynamics products to address
existing environmental challenges and emerging ecological questions
(Asner et al., 2013; Ma et al., 2017). Current endeavors to map land-
scape dynamics are still dominated by the use of multi-date satellite
imagery (DeVries et al., 2015)—an area that will benefit considerably
from the use of multitemporal lidar. For instance, both satellites and
airborne lidar have been emphasized as essential elements of carbon
monitoring systems to measure, report, and verify carbon stocks and
dynamics in support of REDD+ programs and forestry-based climate
policies (Goetz et al., 2015).

Despite the widely envisioned potential of multitemporal lidar,
practical implementations of lidar-assisted monitoring frameworks are
limited (Dassot et al., 2011; Gatziolis et al., 2010; Srinivasan et al.,
2014), urging for more case studies to exemplify multitemporal lidar
analysis at multiple spatial scales for diverse forest types and condi-
tions. Prior lidar vegetation studies focused mostly on a single time at a
single scale, with only a limited number of lidar change studies (Ståhl
et al., 2014). Cao et al. (2016), for example, identified only seven recent
airborne lidar studies on biomass dynamics, all of which considered
merely two points in time at grid/plot levels (e.g., Andersen et al.,
2014; Hudak et al., 2012). Still, the use of repeat lidar data for tracking
ecosystem changes across scales and beyond bi-temporal analyses is
examined inadequately. Such multitemporal analyses seem to be simple
extensions from single-time studies, but the extensions are not always
straightforward with additional challenges involved, as highlighted
next.

Effective use of multitemporal lidar data is affected by many prac-
tical factors, such as availability of ancillary ground data, variation in
lidar acquisition, and choice of lidar analysis methods (Næsset, 2009;
Zhao et al., 2011). Most area-based vegetation attributes, such as bio-
mass and carbon density, cannot be measured by lidar directly. Instead,
they are estimated from lidar metrics at grid cells empirically via cor-
relative models, requiring paired ground-lidar data for model calibra-
tion (Næsset et al., 2005). This paradigm is typical of remote sensing
retrievals of biophysical variables and is known to have issues with
model generality and transferability: Models calibrated for one sce-
nario—a given time, sensor, region, or modeler—are not applicable to
another (Foody et al., 2003; Liang, 2007). Without spatially- and tem-
porally-coincident ground data, calibration of lidar data is infeasible.
This is particularly problematic for applications with historical lidar
data where temporally-coincident ground data were not collected.
Moreover, lidar technologies have been improving rapidly, and most
repeat lidar data were acquired differently, for example, in terms of
sensor, sampling rate, flight pattern, and collection date (Cao et al.,
2016; Shan and Toth, 2008). Such inconsistencies further complicate
multitemporal lidar analyses (Hirata, 2004; Næsset, 2009).

In addition to area-based vegetation analysis at grid levels, the
ability of lidar to detect single trees is well documented (Li et al., 2012;
Nunes et al., 2017; Popescu et al., 2003; Yu et al., 2006). Trees are often
delineated using heuristic algorithms such as watershed segmentation
and maximum filter (Zhao and Popescu, 2007). The algorithms vary in
complexity but generally involve little or no use of ancillary ground
data. Therefore, individual tree analyses have been believed to suffer

less from those factors limiting grid-level analyses (Li et al., 2012).
However, tree parameters obtained directly by lidar are distorted ver-
sions of true values. An example is the under-estimation of actual tree
height, especially at lower laser pulse rates (Hirata, 2004; Popescu
et al., 2003). Thus, these direct measurements still need to be corrected
empirically. Some tree parameters, such as diameter, biomass, and age,
cannot be directly measured by lidar and also need to be estimated
empirically (Yu et al., 2011). As in grid-level analyses, individual tree
analyses should also account for the many practical limiting factors,
such as lack of ground data and varying lidar specifications. To date,
lidar detection of individual tree growth over time remains largely
unexplored.

This study aims to assess the utility of multitemporal lidar for
tracking forest and carbon dynamics and tackle practical difficulties
limiting the use of historical repeat lidar data for vegetation analysis.
An emphasis is on evaluating and improving multitemporal lidar
methods to measure forest changes over time at both individual tree
and grid levels, including tree growth, canopy dynamics, biomass
change, and carbon flux. We conducted four lidar surveys in 2002,
2006, 2008, and 2012, respectively, over a Scottish forest, collected
field inventory data in 2002 and 2006, combined the data to quantify
forest changes at either individual tree or grid levels, and more im-
portant, evaluated alternative modeling strategies to estimate biomass
and carbon stock over time, especially if lacking temporally-con-
comitant ancillary data to calibrate lidar biomass models. Our analyses
and results confirm the power of lidar for tracking forest changes and
help to advance and encourage future use of repeat lidar for carbon
monitoring and ecosystem dynamics studies.

2. Study area and data

Our study area is a 20 km2 forested landscape near the Aberfoyle
village (56°10′ N, 4°22′ W) in Scotland, UK (Fig. 1a). Part of the area
falls within Queen Elizabeth Forest Park. Most of the area is covered
with plantations, grown and clearfelled in 40 to 60 years' rotations, but
~10% of the forests are left to transition to a continuous cover forestry
system. Forest stands are dominated by Sitka spruce (Picea sitchensis
Bong. Carr), followed by other species such as European larch (Larix
decidua), Norway spruce (Picea abies H. Karst), and Lodgepole pine
(Pinus contorta Douglas). The area is characterized by a gentle topo-
graphy. Windstorms are common in this region, with gusts peaking at
150 km/h and catastrophic wind events returning every 10 to 15 years.

Four airborne lidar datasets were collected for the study area over a
ten-year span using Optech's ALTM sensors (Fig. 1b). The exact acqui-
sition years are 2002, 2006, 2008, and 2012. Although similar sensors
were deployed, the acquisition specifications of the four surveys differ
from each other in terms of collection month, pulse repeat frequency,
flying altitude, or sampling rate (Table 1). All the lidar surveys acquired
both first and last returns. The 2006 data have the highest sampling
intensity with an average point density of 23.7/m2, followed by 8.1 for
2012, 6.1 for 2002, and 3.0 for 2008. Raw data were delivered by
vendors as 3D discrete-return point clouds. Each return is also tagged
with echo intensity, but only the xyz ranging data were considered for
our analyses.

Field inventory data were first collected in 2002 on twelve
50 m× 50 m plots and again in 2006 on the same plots (Fig. 1a): no re-
survey data for 2008 and 2012. Both field surveys were conducted
shortly after the respective lidar flights to reduce temporal dis-
crepancies. Established in 2002, the 12 plots were located across the
region to capture the range of canopy variability (Fig. 1a). For ease of
re-survey in 2006, four corners of each plot were marked with per-
manent posts and trees were numbered with metal tags. Tree para-
meters measured include dbh, height, crown width, and tree location.
Dbh was tallied for all trees of> 7 cm in diameter. Tree height was
measured with a Sonic Vertex III hypsometer for all trees in three
10 × 10 m2 subplots selected inside each 50 m × 50 m plot as well as
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