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A B S T R A C T

We have studied the regolith landform distribution in the area of Gaoua, western Burkina Faso, using an in-
tegration of geophysical and remote sensing data. Concentration maps of K, Th, U, as well as their ratios, were
computed from airborne gamma-ray spectrometry data to assess the geochemical composition of the regolith.
The mineralogy of the surfaces was mapped via the analysis of multispectral ASTER and Landsat scenes. Pauli-
decomposition data retrieved from polarimetric ALOS PALSAR and Radarsat-2 images were included to char-
acterize the surface properties of the regolith material. Morphometric variables such as slope, curvature, and
relative relief were derived from the SRTM digital elevation model to quantify the topographic parameters of the
different regolith landforms. An artificial neural network implementation, ADVANGEO, was then employed to
extract four basic regolith landform units from the satellite and airborne data. Relic ferruginous duricrusts rich in
hematite and goethite belonging to the High glacis, erosional surfaces represented by rock outcrops and sub-
outcrops, alluvial sediments, and soft pediment materials of the Middle and Low glacis were mapped successfully
in the region. The results were compared with the existing geomorphological maps, an independent visual
classification, and field observations. We found that the distribution and shape of the iron-rich duricrusts are
more accurate than portrayed in the current maps. The best results, with an overall accuracy of 94.21% and a
kappa value of 0.92, were obtained for a dataset consisting of gamma-ray spectrometry data combined with
derivatives of the SRTM digital elevation model augmented by Landsat, and polarimetric radar data. The ap-
proach demonstrates for the first time the potential of machine learning in regolith landform mapping. The
proposed combined analysis of airborne geophysics and remote sensing data can be adopted easily in other
regions with similar long-term lateritic weathering histories worldwide.

1. Introduction

The term regolith refers to all the lithospheric material including
possible interbedded fresh rocks above the unweathered and con-
solidated bedrock (Taylor and Eggleton, 2001). Tardy (1997) estimates
that nearly one-third of the area of all continents is covered by regolith
resulting from lateritic weathering. Although the regolith represents an
important economic resource (Taylor and Eggleton, 2001; Wright et al.,
1985), it also acts as a hindrance to exploration for mineral deposits
under cover (Anand, 2016; Salama et al., 2016) and geological mapping

in general.
Except in regions where rocks are exposed without major inter-

ruption, a knowledge of the distribution of regolith landform units and
an understanding of the processes that led to their formation is essential
for any successful geological mapping, geochemical or geophysical
survey, or mineral exploration campaign. West Africa remains poorly
covered by regolith landform maps such as those commonly used in
Australia (Pain et al., 2007). Detailed and comprehensive regolith-re-
lated datasets for West Africa are lacking, as most of the regolith maps
are still produced by field mapping and visual interpretation of
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orthophotographs or Landsat images. This standard practice can be
tedious, often further complicated by difficult access to remote and
large survey areas. Some of these limitations may be reduced or over-
come by employing airborne geophysical data and remote sensing data
(Cracknell et al., 2015; Papp, 2002; Wilford et al., 1997; Woolrych and
Batty, 2007), which assess the physical properties of regolith materials
from afar. These datasets provide superior data coverage and may be
utilized via both visual interpretation and automated classification
methods. In countries such as Australia or Canada, pre-competitive (i.e.
government supplied, moderate resolution) datasets that include air-
borne geophysics (magnetic, gamma-ray spectrometry), digital eleva-
tion models, and their derivatives are readily available at no cost and
provide a wealth of information that can be exploited (Cracknell et al.,
2015).

Indeed, one can estimate the chemical composition or mineralogy of
regolith material from airborne gamma-ray spectrometry or multi-
spectral/hyperspectral remote sensing (providing the terrain is not ex-
tensively covered by vegetation), terrain morphology from digital ele-
vation models (e.g. SRTM), and surface roughness or prevailing
geometric shapes from radar imagery (ALOS PALSAR, Radarsat-2).

Gamma-ray spectrometry senses down to a depth of approximately
30 cm and reveals the chemical properties of the material present
(Minty, 1997). Different techniques have been proposed for the analysis
of airborne gamma-ray spectrometry data ranging from the ratios of the
radiometric channels (Dickson and Scott, 1997; Wilford et al., 1997),
color composites, and color space transformations (Jaques et al., 1997),
to integration with optical and near-infrared datasets (Anderson and
Nash, 1997; Schetselaar et al., 2000). Martelet et al. (2006) used Ag-
glomerative Hierarchical Clustering algorithm to classify airborne
gamma-ray spectrometry data in French Guyana and noticed that fer-
ralitic and bauxitic duricrusts display elevated U, Th content relative to
K. In West Africa, Grimaud et al. (2015) used the Th/K ratio images to
map the extent of the High glacis regolith surface. Wilford et al. (1997,
2007) derived regolith landform maps from gamma-ray spectrometry
data and recently used gamma-ray spectrometry data as one of the
parameters used during continental-scale regolith depth estimation
(Wilford et al., 2016)

Unlike the gamma-ray data, optical remote sensing allows us to map
the spectral reflectance of a thin surficial layer and characterize its
mineral composition (Drury, 1993). Landsat imagery is routinely em-
ployed in regolith mapping (Craig et al., 1999), including directed
principal component analysis (DPCA). The DPCA technique enhances
the response of clay minerals and suppresses the effects of vegetation
(Fraser and Green, 1987). While the spectral resolution of Landsat
imagery enables us only to distinguish certain mineral groups, hyper-
spectral remote sensing may help us to analyze the individual mineral
components of regolith (Dehaan and Taylor, 2004; Lau et al., 2003;
Laukamp et al., 2016). Cudahy et al. (2006) studied the relationship of
kaolinite disorder to the depth of the Al-OH absorption in transported
versus in situ regolith and observed that poorly crystalline kaolinite is
found mostly in transported regolith material. Various techniques were
applied in the classification of optical data in regolith applications
ranging from visual interpretation of enhanced images (Deller, 2006) to
automated approaches, e.g. Matched Filtering (Dehaan and Taylor,
2004).

Synthetic Aperture Radar (SAR) imagery complements optical
images in geological applications (Baghdadi et al., 2005), as radar
images provide unique information about structural, morphological or
sedimentary features, and moisture content. This information is directly
tied to the physical properties of different terrain surfaces (Drury, 1993;
Henderson and Lewis, 1998). Tapley (2002) showed that polarimetric
AIRSAR (Airborne Synthetic Aperture Radar) data band combination
CVV (vertical receive-vertical transmit), LHV (horizontal receive-vertical
transmit), and PHV was best suited for geological mapping of arid to
semi-arid Australia. In regolith landform mapping, radar data have the
capability of distinguishing between flat lying, uniform units such as

alluvial sediments and rock outcrop with rougher, irregular surfaces.
AIRSAR PVV and LVV data were found useful in mapping erosional
landforms, while band CVV provided clear discrimination between al-
luvial deposits and erosional features (Tapley, 2002). Automated clas-
sifications of polarimetric SAR are usually performed on the four po-
larimetric channels, or on polarimetric decompositions of the scattering
matrix (Cloude and Pottier, 1997; McNairn et al., 2009).

Digital elevation models and their derivatives are frequently used
for landform mapping in conjunction with other remote sensing data
(Giles, 1998; Henquin and Totté, 1993; Irvin et al., 1997; Jakob et al.,
2016; Liberti et al., 2009; Saadat et al., 2008; Siart et al., 2009). Slope,
curvature, and aspect were used by Bolongaro-Crevenna et al. (2005) to
characterize simple morphometric features such as valleys, peaks,
ridges, or planes. With the advent of high-resolution DEMs (Digital
Elevation Models) acquired by LiDAR (Light Detection and Ranging) or
by UAV (Unmanned Aerial Vehicle) photogrammetry, these techniques
show great potential and have been successfully applied in many stu-
dies (e.g. Grebby et al., 2010; Grebby et al., 2011; Hugenholtz et al.,
2013; Mulder et al., 2011). In regolith science, Henquin and Totté
(1993) and Woolrych and Batty (2007) suggested the use of morpho-
metric variables such as slope in mapping regolith landforms in West
Africa, as these are generally formed by morphologically discernible
units, e.g. flat lying residual plateaus or alluvial deposits, gently sloping
colluvial deposits or high relief erosional features related to rock out-
crops.

Dense vegetation cover may limit the application of most of the
described techniques. Indeed, the best results in mapping of the diverse
regions around the world would require the integration of several data
sets to characterize both the chemical and morphological properties of
different regolith landform units and overcome the masking effects of
vegetation. Such integration may be facilitated by simple overlaying of
various layers in a GIS followed by visual interpretation (Arhin et al.,
2015; Craig et al., 1999; Craig, 2001; Grimaud et al., 2015; Papp, 2002;
Woolrych and Batty, 2007) or via automated classification methods
which are not as common (Cracknell et al., 2015; Iza et al., 2016;
Wilford et al., 2007). While visual classification can provide good re-
sults, it is often subjective and requires a long time to complete. In
contrast, automated methods, which can achieve similar levels of ac-
curacy, are considered more objective, repeatable, and faster.

Machine learning methods such as artificial neural networks (ANN)
have been applied in geoscience remote sensing data analysis pre-
viously, including multi perceptron networks (An et al., 1995), prob-
abilistic networks (Zhang et al., 2009), Kohonen self-organizing maps
(Cracknell et al., 2015; Grebby et al., 2010, 2011), or quantile regres-
sion forests (Kirkwood et al., 2016).

This study aims to evaluate artificial neural network classification of
regolith landform units in a moderately vegetated region of West Africa
through the joint analysis of airborne geophysical and remote sensing
data. Gamma-ray spectrometry, SRTM, Radarsat-2, ALOS Palsar,
Landsat, and ASTER data were combined sequentially to examine the
influence of particular sensor/technique on the classification accuracy.
A maximum-likelihood classification was performed on the same set of
data to compare the non-linear neural network classifier to a traditional
statistical method.

2. Study area description

The study area is located in the Paleoproterozoic Baoule Mossi do-
main of the West African Craton near the town of Gaoua (Fig. 1) in
southwest Burkina Faso and encompasses 686 km2.

The planation surfaces of Burkina Faso (Fig. 2) developed on the
basement rocks of the West African Craton (Fig. 1). The surfaces are a
result of long-term deep weathering and erosion of the African con-
tinent under varying climatic conditions (Beauvais et al., 2008; Michel,
1973; Tardy and Roquin, 1998), mainly after the breakup of Gondwana
in the Mesozoic (Chardon et al., 2006; King, 1962; Wright et al., 1985).
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