RSE-10216; No of Pages 9

Remote Sensing of Environment xxx (2017) XXX-XXX

Contents lists available at ScienceDirect

Remote Sensing
Envirdnment

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Near-real-time focusing of ENVISAT ASAR Stripmap and Sentinel-1 TOPS
imagery exploiting OpenCL GPGPU technology

Achille Peternier, John Peter Merryman Boncori *, Paolo Pasquali

Sarmap SA, Purasca, Switzerland

ARTICLE INFO ABSTRACT

Article history:

Received 1 July 2016

Received in revised form 13 February 2017
Accepted 11 April 2017

Available online xxxx

This paper describes a SAR image focuser application exploiting General-purpose Computing On Graphics Pro-
cessing Units (GPGPU), developed within the European Space Agency (ESA) funded SARIPA project. Instead of
relying on distributed technologies, such as clustering or High-performance Computing (HPC), the SARIPA pro-
cessor is designed to run on a single computer equipped with multiple GPUs. To exploit the computational
power of the latter, while retaining a high level of hardware portability, SARIPA is written using the Open Com-
puting Language (OpenCL) framework rather than the more widespread Compute Unified Device Architecture
(CUDA). This allows the application to exploit both GPUs and CPUs without requiring any code modification or
duplication. A further level of optimization is achieved thanks to a software architecture, which mimics a distrib-
uted computing environment, although implemented on a single machine. SARIPA's performance is demonstrat-
ed on ENVISAT ASAR Stripmap imagery, for which a real-time performance of 8.5 s is achieved, and on Sentinel-1
Interferometric Wideswath (IW) raw data products, for which a near-real time processing time of about 1 min is
required. Such a performance has the potential of significantly reducing the storage requirements for wide-area
monitoring applications, by avoiding the need of maintaining large permanent archives of Level 1 (focused) im-
agery, in favor of lighter Level 0 (raw) products, which can be focused on-the-fly within the user's application

Keywords:

Synthetic Aperture Radar
Image focusing

GPGPU

OpenCL

processing pipelines at almost no overhead.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

With the successful launch in the last two years of the first four Sen-
tinel satellites, two of which (Sentinel-1A and 1B) carrying a Synthetic
Aperture Radar (SAR) payload, users and service providers in the re-
mote sensing field are more and more faced with Big Data handling
problems. The Sentinel routine acquisition plans, their free and open
data policy, and the commitment of the European Copernicus Pro-
gramme to ensure mission continuity up to 2030 is unprecedented
and has already significantly increased the number of Earth Observation
(EO) data users. This increased data availability, combined with the ma-
turity level of several data processing techniques, which have been de-
veloped since the early '90s, has the potential of boosting research
activities and commercial services based on satellite data, and also rep-
resents a prerequisite for the development of cost-effective, and poten-
tially also near-real-time, monitoring services.

On the other hand, it is well established that new technological solu-
tions are required to handle Big Data. An effective approach for some
users and applications is to run computationally-intensive algorithms

* Corresponding author at: Sarmap SA, Via Cascine di Barico 10, 6989 Purasca,
Switzerland.
E-mail address: jmerryman@sarmap.ch (J.P. Merryman Boncori).

http://dx.doi.org/10.1016/j.rse.2017.04.006
0034-4257/© 2017 Elsevier Inc. All rights reserved.

on supercomputers or distributed computing systems, which consist
of a large number of physical machines (worker nodes), located in cen-
tral processing facilities, such as the ESA G-POD environment (e.g., De
Luca et al., 2015), or virtualized through cloud computing (e.g., Zinno
et al,, 2015). At the same time, several research institutions and SAR-
data service providers currently rely on small to medium size in-house
processing facilities (e.g., local clusters or just powerful workstations).
Both scenarios benefit from solutions which improve the degree to
which the computational resources of single machines are exploited.
In particular General-purpose computing on Graphics Processing Units
(GPGPU) has received lots of attention in recent years, since potentially
it can provide access to massively-parallel processing capabilities (up to
several thousands of cores) on single workstations, enabling these to
perform as “personal supercomputers”. Furthermore, the availability
of frameworks including programming APIs for standard languages
(like C/C++) allows applications with a high level of portability across
different hardware platforms (ranging from laptops to multiple-GPU
servers) to be built, although an effort is required in terms of software
architecture design and code refactoring.

This paper describes a performance-optimized SAR image focusing
software, developed from scratch within the ESA SARscape Image Pro-
cessor Accelerator project (SARIPA), and which is not related to the op-
erational processor used by ESA for the generation of Level 1 SAR

Please cite this article as: Peternier, A, et al., Near-real-time focusing of ENVISAT ASAR Stripmap and Sentinel-1 TOPS imagery exploiting OpenCL
GPGPU technology, Remote Sensing of Environment (2017), http://dx.doi.org/10.1016/j.rse.2017.04.006



http://dx.doi.org/10.1016/j.rse.2017.04.006
mailto:jmerryman@sarmap.ch
Journal logo
http://dx.doi.org/10.1016/j.rse.2017.04.006
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse
http://dx.doi.org/10.1016/j.rse.2017.04.006

2 A. Peternier et al. / Remote Sensing of Environment xxx (2017) XXx-XXX

products. The main goal of SARIPA is to explore the potential of GPGPU
technology to reduce processing time on a single machine, thus tackling
the data deluge problem by providing a faster and portable local pro-
cessing, requiring less computational resources compared to High-per-
formance Computing (HPC) and cloud computing. ENVISAT ASAR
Image Mode (IM) and Sentinel-1 Interferometric Wideswath (IW) raw
images are used as a test-case, with the goal of achieving near-real-
time focusing performance on a single computer with multiple GPUs.

Near-real-time SAR image focusing has been the topic of several re-
cent papers, which have addressed the exploitation of multi-core CPUs
(Imperatore et al.,, 2016), or GPUs, using the Compute Unified Device Ar-
chitecture technology (NVIDIA, 2016a) proprietary to NVIDIA (Zhang et
al., 2016; Trittico et al., 2014; Di Bisceglie et al., 2010). SARIPA is based
on the more portable Open Computing Language technology (OpenCL,
2016), which unlike CUDA allows the generated software to be execut-
ed on a wider range of devices, including computers with non-NVIDIA
GPUs or without any GPU at all.

This paper shares the experience gathered through the design and
development of SARIPA, whose outcome is not limited to SAR focusing,
but could be reused for several other computationally intensive SAR
processing algorithms (e.g., interferometry, measurement of deforma-
tion time series). The strengths and weaknesses of basing SARIPA on
the more liberal OpenCL are discussed in Section 2, whereas the soft-
ware architecture is described in Section 3. Section 4 details the
processor's performance and its potential impact on the Big Data prob-
lem in a concrete application scenario. Discussions and conclusions are
provided in Sections 5 and 6 respectively.

2. Frameworks for multi-core CPU and GPU exploitation

Several frameworks have emerged in recent years to leverage the
computational power provided by modern GPUs. These range from ded-
icated libraries and Software Development Kits (SDKs) to extensions di-
rectly embedded into compilers such as Microsoft's C++AMP and
OpenACC. Concerning GPU computing, the two most widespread
frameworks are the Compute Unified Device Architecture (NVIDIA,
2016a), and the Open Computing Language (OpenCL, 2016). CUDA
and OpenCL are also frameworks that provide developers with the fin-
est control over code implementation and performance, unlike
C++AMP and OpenACC, which focus on making the GPU-side aspects
as transparent and automatic as possible through high-level abstrac-
tions (Hoshino et al., 2013).

CUDA is an NVIDIA proprietary parallel computing platform and pro-
gramming model, supporting various languages (e.g., C, C++, FOR-
TRAN), and providing optimized libraries for standard mathematical
algorithms, like Basic Linear Algebra Subprograms (BLAS) and the Fast
Fourier Transform (FFT). CUDA only works on GPUs that are produced
by NVIDIA, which on one hand limits code portability to other hardware
platforms (i.e., GPUs produced by AMD or Intel and GPU-less com-
puters), on the other it provides a simpler and high efficiency frame-
work, since NVIDIA-specific optimizations can be automatically
performed and new features can be added without requiring the con-
sensus of other hardware manufacturers. Furthermore, NVIDIA is also
the producer of the most widespread cards for GPU computing, namely
the TESLA series (NVIDIA, 2016b), which are often used in HPC.

OpenCL is a framework for writing applications that can be executed
across a series of heterogeneous computational devices that include not
only GPUs, but also CPUs, Digital Signal Processors (DSPs), Field-Pro-
grammable Gate Arrays (FPGAs) and ARM processors. OpenCL is an
open standard maintained and supported by the nonprofit Khronos
Group consortium (Khronos, 2016). Compared to CUDA, OpenCL pro-
vides a more abstract framework, allowing direct portability of the
code between hardware solutions of different vendors (NVIDIA, AMD
and multi-core CPUs), at the expense of a slightly steeper learning
curve and less versatile implementation of hardware-specific

optimizations, e.g., concerning on-board memory and data communica-
tion with the CPU and with other GPU cards.

From the programming point of view, the CUDA and OpenCL frame-
works show many similarities. In both a distinction is made between
two logical parts of the code, namely a host part, to be executed on
the CPU of the host machine, and a so-called device part, to be executed
by many parallel threads (kernels) on the selected GPGPU device(s).
Similarly, both frameworks distinguish between host and device mem-
ory, and provide functions to handle allocation and data-transfer be-
tween these. Concerning the API, this is unique in OpenCL, whereas
for CUDA two APIs providing the same performance are available: the
CUDA Driver API and the CUDA Runtime API. The former is also very
similar to OpenCL, with a high correspondence between functions of
the two frameworks.

Concerning performance, it is expected for GPU-based
implementations to outperform CPU-based ones, as the workload, i.e.,
number of floating-point operations per second (FLOPS), increases
(Lee et al., 2010). Due to its higher abstraction level and portability,
OpenCL implementations have been found in the past to be slower
than CUDA ones (Fang et al., 2010), although recently this gap has
been reduced significantly (Kim et al., 2015) and mainly depends on
the quality of the runtime implementation.

In addition, a common limitation for a generalized GPGPU-based ap-
proach is related to the size of the workload. The GPU is a kind of sec-
ondary computer within the main computer, featuring its own
processor (the GPU), its own memory (the video RAM, or simply
VRAM), its own conventions (instruction set, caching, data alignment,
timing, etc.) and its own connectivity (usually a fast PCI-Express bus
connecting the graphics card with the rest of the machine). This
means that for a given task, the GPU-side execution performs a series
of additional steps that are not required by its conventional CPU coun-
terpart. A typical GPU-side computation consists in: 1) copying relevant
information from system to device memory; 2) the compilation, param-
eterization and execution of a specific series of instructions; 3) waiting
for the asynchronous execution to terminate; 4) copying the results
back from device to system memory. Depending on the size and com-
plexity of the problem, the overhead incurred by these four operations
can be higher than the computational speedup provided through
GPGPU.

These considerations make the choice of when and how to use
GPGPU in SAR processing a more delicate matter, since typically
image-wide operations (in principle a perfect match for GPU-side exe-
cution) are interleaved by smaller operations (e.g., setting up filtering
parameters, sampling sub-image portions, etc.) which may introduce
a severe overhead.

To gauge the impact of the aforementioned aspects and to guide the
design and optimization of SARIPA, several tests, detailed in Peternier et
al. (2013), were performed to analyze the behavior of common SAR-re-
lated algorithms carried out via GPGPU. In this section we discuss a per-
formance test concerning 1D FFT calculation, since this is a core
algorithm, which is heavily used within many SAR processing applica-
tions, including image focusing. The tests were carried out on Ma-
chine-A (Table 1).

We compare the highly-optimized FFT provided in the Intel's Math
Kernel Library (MKL), taken as a reference FFT implementation for
CPU-only performance, with GPU processing using CUDA (using

Table 1
Platform used for the FFT performance tests.

Machine-A (FFT performance test)

oS Windows 7

CPUs 1x Intel Core i7-930 @2.8GHz (4 cores)

RAM 12 GB

GPU 1x NVIDIA TESLA M2050 Fermi (3 GB of VRAM)
Storage Not relevant for the test

Please cite this article as: Peternier, A, et al., Near-real-time focusing of ENVISAT ASAR Stripmap and Sentinel-1 TOPS imagery exploiting OpenCL
GPGPU technology, Remote Sensing of Environment (2017), http://dx.doi.org/10.1016/j.rse.2017.04.006



http://dx.doi.org/10.1016/j.rse.2017.04.006

Download English Version:

https://daneshyari.com/en/article/8866960

Download Persian Version:

https://daneshyari.com/article/8866960

Daneshyari.com


https://daneshyari.com/en/article/8866960
https://daneshyari.com/article/8866960
https://daneshyari.com

