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A B S T R A C T

Satellite-derived land cover maps play an important role in many applications, including monitoring
of smallholder-dominated agricultural landscapes. New cloud-based computing platforms and satellite
sensors offer opportunities for generating land cover maps designed to meet the spatial and temporal
requirements of specific applications. Such maps can be a significant improvement compared to existing
products, which tend to be coarser than 300 m, are often not representative of areas with fast-paced land use
change, and have a fixed set of cover classes. Here, we present two approaches for land cover classification
using the Landsat archive within Google Earth Engine. Random forest classification was performed with (1)
season-based composites, where median values of individual bands and vegetation indices were generated
from four years for each of four seasons, and (2) metric-based composites, where different quantiles were
computed for the entire four-year period. These approaches were tested for six land cover types spanning
over 18,000 locations in Zambia, with ground “truth” determined by visual inspection of high-resolution
imagery from Google Earth. The methods were trained on 30% of these points and tested on the remaining
70%, and results were also compared with existing land cover products. Overall accuracies of about 89% were
achieved for the season- and metric-based approaches for individual classes, with 93% and 94% accuracy for
distinguishing cropland from non-cropland. For the latter task, the existing Globeland30 dataset based on
Landsat had much lower accuracies (around 77% on average), as did existing cover maps at coarser resolu-
tions. Overall, the results support the use of either season or metric-based classification approaches. Both
produce better results than those obtained from previous classifiers, which supports a general paradigm
shift away from dependence on standard static products and towards custom generation of on-demand
cover maps designed to fulfill the needs of each specific application.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Accurate maps of land cover are fundamental to many appli-
cations in land management and environmental monitoring. In
response to the large demand for these maps, a variety of prod-
ucts are available, most of which rely extensively on classification
of satellite data. Classification approaches attempt to use spectral
differences between land cover types. In order to maximize classi-
fication accuracy, input images must have minimal contamination
from clouds, haze, shadow, or other disturbances. Such images can be
obtained by compositing together, according to specific criteria, large
sets of observations recorded across a certain time span (Lück and
van Niekerk, 2016). Because resolving fine spectral differences across
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similar classes using a single image can be challenging, often more
than one composite is generated to characterize phenological varia-
tion, quantified either as explicit change across seasons or within the
growing season, or as other annual and inter-annual temporal met-
rics (Zhong et al., 2011; Simonetti et al., 2015; Chang et al., 2007;
Hansen et al., 2011, 2014).

Depending on the overall number of observations involved, gen-
erating such composites and running the classification requires sig-
nificant data storage capacity, high computational power, and the
ability to distribute non-trivial algorithms across multiple machines.
Until very recently, such requirements were the prerogative of few
institutions and very specialized individuals, who invested signifi-
cant time and resources in generating global cover maps applicable
to the widest range of applications. A few of these global prod-
ucts were produced during the last fifteen years (Waldner et al.,
2015). Some of them became standard tools used widely by the
remote sensing community and have played an invaluable role in the
advancement of several fields.
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Most global land cover products tend to have a resolution coarser
than the scale of true heterogeneity in many places. For example, the
Global Land Cover database for the year 2000 (GLC2000), a SPOT4-
based map produced by the European Commission’s Joint Research
Center (JRC), has a resolution of 1/112 degree per pixel (about 1 km at
the equator, larger at higher latitudes) (Fritz et al., 2003; Bartholomé
and Belward, 2005). Globcover, produced by the European Space
Agency with ENVISAT-MERIS data, has a 300 m resolution (Arino
et al., 2007; Bicheron et al., 2008), and the Moderate-resolution
Imaging Spectroradiometer (MODIS) Collection 5 Land Cover
Product has a 500 m resolution (Friedl et al., 2010). The Global
Land Cover Characterization database (GLCC), resulting from a con-
certed effort between the U.S. Geological Survey (USGS), University
of Nebraska Lincoln (UNL) and the JRC, is based on the Advanced
Very High Resolution Radiometer (AVHRR) and has a nominal resolu-
tion of 1 km (Loveland et al., 2010). The Global Food Security-support
Analysis Data Product (GFSAD1000) has a nominal scale of 1 km
(Thenkabail et al., 2012). The global Spatial Production Allocation
Model (SPAM) dataset, generated using an entropy-based method that
utilizes several datasets and ancillary information, has a resolution of
5 arcmin(about 10 km at the equator). The International Institute for
Applied Systems Analysis-International Food Policy Research Insti-
tute (IIASA-IFPRI) cropland product, a cropland percentage hybrid
map generated using some of the datasets mentioned above, has a
resolution of 1 km (Fritz et al., 2015). A more complete and detailed
review of available crop cover maps, which is beyond the scope of this
study, can be found in Waldner et al. (2015). Although undoubtedly
useful for many applications, cover maps with resolutions of 300 m
or coarser are of limited use in the complex, smallholder-dominated
agricultural landscapes of many developing countries (Anderson et
al., 2015see also Fig. 9 for a visual comparison). Moreover, recent
studies have shown how some of these datasets are often not reli-
able over cropland areas, as they show significant disagreement with
each other and with national statistics (Waldner et al., 2015; Fritz et
al., 2011; Ramankutty et al., 2008).

A much smaller number of higher resolution static cover maps
based on Landsat data have been generated and made publicly avail-
able. For example, Hansen et al. (2014, 2011) used Landsat compos-
ites at various timescales to estimate temporal metrics that capture
growing-season phenology and generated a CONUS land cover map.
Their work, however, was mostly aimed at forestry applications and
did not include a cropland class. More recently, the National Geo-
matic Center of China (NGCC) produced a 30 m global land cover
map. Their work was in part based on classification of Landsat and
China Environmental Disaster Alleviation Satellite (HJ-1) images. In
addition, GNCC used a large amount of ancillary data, including pre-
existing cover maps, thematic data, and topographic information
(Chen et al., 2015).

Regardless of their spatial resolution, all current global land cover
maps have two main limitations: 1) the lack of temporal updates,
and 2) their fixed number and type of classes, which may fit well in
global studies but are of limited use in finer scale applications. The
recent implementation of new powerful cloud-based computational
frameworks, along with the growing availability of imagery result-
ing from the Landsat Global Archive Consolidation (LGAC) initiative
(Wulder et al., 2016), is making custom Landsat-based classification
more accessible, and may help overcome the limitations of existing
products. Particularly, Google Earth Engine (GEE) has emerged as an
invaluable tool by offering a vast data pool of satellite imagery and
access to advanced algorithms that are highly parallelized behind the
scenes. In fact, over the last two years several applications have been
developed that aim at some form of classification using Google Earth
Engine at regional (e.g. Dong et al., 2016; Patel et al., 2015; Simon-
etti et al., 2015; Miettinen et al., 2016; Padarian et al., 2015) to global
scales (e.g. Hansen et al., 2013 ; Pekel et al., 2016). Similarly, col-
lecting ground points for training and validation has become easier

thanks to: (i) easy access to global (and occasionally multi-temporal)
high-resolution images through Google Earth (Yu and Gong, 2012),
(ii) tools for easy KML creation and editing, (iii) open-access GIS data
(e.g. Open Street Map), and (iv) crowd-sourcing-based data collec-
tion approaches such as Geo-Wiki.org (Fritz et al., 2009; See et al.,
2015).

The objective of the current study is to assess whether these
new tools are capable of generating custom cover maps that are at
least as good for detecting crops as standard land cover products. To
investigate this question, we use Google Earth Engine to classify agri-
cultural landscapes in Zambia, and resolve between different natural
vegetation covers, urban areas, rainfed crops and irrigated crops.
In particular, we train a random forest classifier on two different
types of Landsat composites: a phenological composite and a met-
rics composite. We then quantify the accuracy of the resulting cover
map in resolving these cover types and compare results with exist-
ing products in distinguishing crop from non-crop observations. We
demonstrate that both of our GEE-generated maps produce higher
accuracies than existing products, while also allowing more flexibil-
ity in terms of cover class selection and reference years. This result
demonstrates how frameworks such as Earth Engine, by simplifying
access and processing of large amount of satellite data, are changing
the paradigm in land cover monitoring from a static, product-based
approach into a more dynamic and application-specific one without
any loss of accuracy.

2. Materials and methods

2.1. Research area

We focused this case study in the Republic of Zambia (Fig. 1).
This 752,617 km2 region well represents the complex, smallholders-
based agricultural landscape of Sub-Saharan Africa, and also contains
relatively large areas of industry-driven irrigated cropland and urban
settlements. According to CountrySTAT (FAO, 2016) the largest frac-
tion of the total crop area is utilized for maize (average of 76%
between 2011 and 2015), followed by groundnuts (7%), seed cotton
(4%), sunflower seeds and sorghum (3%), sweet potatoes and soy-
beans (2%), and other minor crops covering less than 1% each. Zambia
has also a diverse set of natural vegetation cover types, includ-
ing forests, shrubland, savannas, grassland, and swamps (Ellenbroek,
1987).

Climatologically, Zambia provides an interesting research area, as
it is characterized by three distinct seasons (Ellenbroek, 1987): 1) a
warm, rainy season from November to April, 2) a cool, dry season
from April to August, and 3) a hot, dry season from August to Novem-
ber. Sowing dates for maize are around the beginning of November,
while peak season is between the end of January and mid-February.
Based on the climatological and agricultural calendar, we defined
four phenological seasons: S0) from November 1 to January 31, S1)
from February 1 to April 30, S2) from May 1 to July 31, and S3) from
August 1 to October 31. For practical reasons, we also define a “sea-
sonal year” X as the range of dates starting from November 1 (X − 1)
and ending October 31 X. For example, seasonal year 2015 starts
November 1, 2014 and ends October 31, 2015.

2.2. Landsat composites

Landsat-based composites are particularly challenging to obtain
because, despite Landsat’s 16-day nominal revisit time, its actual
data availability is heavily limited by cloud cover, technical issues,
data acquisition strategies, downlink capability, and changes in mis-
sion management the program underwent over the years (Ju and
Roy, 2008; Whitcraft et al., 2015; Yu et al., 2015; Roy et al., 2010b;
Wulder et al., 2016). In addition, Landsat 7 ETM+ data acquisition is
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