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A B S T R A C T

Accurate and real-time yield forecasting is one of the main pillars for decision making in farming and thus for
farmers’ profitability. Biomass has been traditionally predicted by multi- and hyperspectral vegetation indices
from low- and medium-resolution platforms. This research work aimed to assess the accuracy of the combined
use of agro-climatic information and very high-resolution products obtained with RGB cameras mounted on
unmanned aerial vehicles (UAVs) for biomass predictions in maize (Zea mays L.). Two agro-climatic predictors,
reference evapotranspiration (ETo) and growing degree days (GDDs), and twelve vegetation indices (VIs) de-
rived from RGB bands were calculated for the entire growing cycle. The root mean squared error (RMSE) of the
model that considers only GDD to estimate total dry biomass (TDB) was 692.7 gm−2, which was reduced to
509.3 gm−2 when introducing as predictor variables the VARI and GLI vegetation indices. Difficulties in the
radiometric calibration of consumer grade RGB cameras together with sources of error such as the bidirectional
reflectance distribution function and the blending algorithms in the photogrammetry processing could decrease
the applicability of the obtained relationship and should be further evaluated. This study illustrated the ad-
vantage of the combined use of agro-climatic predictors (GDD) and green-based VIs derived from RGB consumer
grade cameras for biomass predictions.

1. Introduction

Field maize (Zea mays L.) is one of the most harvested cereal crops
worldwide for the food supply and animal feed. The total world har-
vested area is more than 184 million hectares (FAOSTAT, 2014). Maize
is cultivated in both hemispheres and is the main pillar for food and
feed security and smallholding maintenance in many countries. Accu-
rate and real time yield estimation and forecasting is essential to de-
velop national and international plans to guarantee food security (Zhou
et al., 2017). Therefore, improving knowledge and methodologies to
increase the accuracy of these predictions is essential in those countries

where maize is a main source of food and feed.
The literature has widely reported that variables derived from cli-

matic variables, such as temperature and photoperiod, are good pre-
dictors of biomass for maize (Bonhomme et al., 1989; Tollenaar et al.,
1978). Thermal time, mainly based on growing degree days (GDD), i.e.,
accumulated degrees below and over a thermal threshold where there is
no growth, has been traditionally used as an independent variable to
describe accumulated biomass. The use of linear, polynomial and other
non-linear functions, such as Gompertz or Weibull functions, to de-
scribe accumulated biomass for the entire growing cycle over the GDDs
is well-known (Heggenstaller et al., 2008; Meade et al., 2013). The

https://doi.org/10.1016/j.jag.2018.05.019
Received 7 February 2018; Received in revised form 23 May 2018; Accepted 29 May 2018

⁎ Corresponding author.
E-mail addresses: rballesteros@usal.es (R. Ballesteros), Jose.Ortega@uclm.es (J.F. Ortega), David.Hernandez@uclm.es (D. Hernandez), ana.delcampo@uclm.es (A. del Campo),

Miguelangel.Moreno@uclm.es (M.A. Moreno).

Abbreviations: AI, aridity index; β, normalized blue; BCCH, Biologische Bundesanstalt Bundessortenamt and Chemical Industry scale; DTM, digital terrain model; ETc, crop evapo-
transpiration; ETo, reference evapotranspiration; EVI, enhance vegetation index; ExB, excess blue vegetation index; ExG, excess green vegetation index; ExGR, excess green minus excess
red; ExR, excess red vegetation index; ɣ, normalized green; GCP, ground control point; GDD, growing degree days; GLI, green leaf index; GNSS-RTK, global navigation satellite system-real
time kinematic; GPS, global position system; GRVI, green-red vegetation index; Ikaw, Kawashima index; LAI, leaf area index; NDVI, normalized difference vegetation index; NGRDI,
normalized green red difference index; OSAVI, optimized soil-adjusted vegetation index; P, monthly total rainfall; ρ, normalized red; R, Pearson’s correlation coefficient; R2, coefficient of
adjustment; R2

adj, adjusted coefficient of determination; RDVI, renormalized difference vegetation index; RGB, red, green and blue; RGRI, red green ration index; RH, monthly means of
mean relative humidity; RMSE, root mean squared error; RTK GPS, real time kinematic global position system; SAVI, soil adjusted vegetation index; SfM, Structure from Motion; SSE, sum
of squared error; SWL, stepwise linear regression; TDB, total dry biomass; TDBobserved, total dry biomass observed; TDBsimulated, total dry biomass simulated; TMAX, monthly means of mean
daily maximum temperature; TMIN, monthly means of mean daily minimum temperature; U2, monthly means of mean daily wind speed; UAV, unmanned aerial vehicle; VARI, visible
atmospherically resistance index; VI, vegetation index; WBI, water band index

Int J Appl  Earth Obs Geoinformation 72 (2018) 66–75

0303-2434/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2018.05.019
https://doi.org/10.1016/j.jag.2018.05.019
mailto:rballesteros@usal.es
mailto:Jose.Ortega@uclm.es
mailto:David.Hernandez@uclm.es
mailto:ana.delcampo@uclm.es
mailto:Miguelangel.Moreno@uclm.es
https://doi.org/10.1016/j.jag.2018.05.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2018.05.019&domain=pdf


response of maize to irrigation has been shown to be a greater de-
terminant of yield and biomass formation than other actors involved,
e.g., fertilization. Regarding this statement, Di Paolo and Rinaldi (2008)
and Zwart and Bastiaanssen (2004) explored the yield response of
maize to actual evapotranspiration and crop evapotranspiration rates
under different environmental and management constrains, such as
different nitrogen application rates. However, deeper knowledge is es-
sential for detailed crop monitoring, especially in those areas where
broad use and affordable technologies are required (Vergara-Díaz et al.,
2016), e.g. when small farmers are the targets.

Remote sensing is a very useful tool for real-time decision support
systems in agriculture. High- resolution (10m or less) and medium-
resolution (less than 100m) remote sensing have evolved rapidly in the
last years, overcoming previous constraints related to spatial and tem-
poral resolutions, i.e., the Sentinel-2 constellation that delivers multi-
spectral data from 10 to 60m spatial resolution and 5 days temporal
resolution, or the use of constellations of nanosatellites that can operate
from 3 to 5m resolution on a daily scale (Houborg and McCabe, 2016;
Martín et al., 2011). Nevertheless, atmospheric effects or weather in-
terference and the lack of information related to specific phenological
events are still unsolved constraints in crop monitoring (Matese et al.,
2015). In addition, these remote sensing images require exhaustive data
processing algorithms and post-interpretation (Fonstad, 2012). Also,
when small plots, complex terrain, and cloudy weather prevails, au-
thors such as Zhou et al. (2017) recommended the use of high resolu-
tion platforms.

The high spatial (centimetric) and flexible resolution data offered by
unmanned aerial vehicles (UAVs) are becoming a widely used tool for
agronomic observation. UAVs have overcome satellite fixed revisit
constrains allowing flight sampling under desired temporal resolutions.
Although UAV platforms have noticeably improved flight endurance,
the low payload capacity, ground coverage and the use of miniaturized
sensors with inconsistent characterisation and calibration constrain
their applicability. In order to solve these constrains we developed tools
and methodologies such as: 1) developing software to perform accurate
flight planning that optimizes the covered area per flight and the ac-
curacy in the results (Hernández-López et al., 2013); 2) developing
methodologies to avoid the use of targets and detect blur images that
reduces the field work and post-processing time (Ribeiro-Gomes et al.,
2016); 3) to perform accurate thermal cameras calibration to improve
the quality in the measurement of crop temperature (Ribeiro-Gomes
et al., 2017); 4) detecting sun glint and hotspot in images obtained with
UAVs (Ortega-Terol et al., 2017); together with many procedures to
extract useful information from high-resolution remote sensing in-
formation, primarily using RGB images (Ballesteros et al., 2018, 2015b;
Córcoles et al., 2013). Thus, with these methodologies and many others
developed by researchers all along the World, the applicability of UAVs
in agriculture is becoming a reality.

Spectral indices derived from multi- and hyperspectral images have
been traditionally used to monitor, analyse and map crops and vege-
tation (Bendig et al., 2014; Córcoles et al., 2013; Duan et al., 2017;
Jannoura et al., 2015). Many authors have deeply explored the re-
lationships between traditional spectral indices with different crop
variables, such as the normalized difference vegetation index (NDVI),
which has been widely studied to estimate crop growth status and yield
for high- and medium-resolution platforms. Nevertheless, vegetation
indices (VIs) are strongly dependent on the different spectral wave-
bands used in calculations, the spectral resolutions and the different
equations used (Rasmussen et al., 2016). It is well-known that the NDVI
is strongly correlated with the leaf area index (LAI), although it satu-
rates when the canopy closes (Duan et al., 2017). Many studies have
analysed the crop growth status based on the different patterns of the
NDVI behaviour for maize and other cereals to discriminate and map
weed patches (Martín et al., 2011), for field phenotyping (Zaman-Allah
et al., 2015), for yield forecasts under drought conditions (Martyniak
et al., 2007), under different conditions of nitrogen (Vergara-Díaz et al.,

2016) or phosphorus fertilization (Gracia-Romero et al., 2017) and to
determine water requirements (Toureiro et al., 2017). Although there
are many multispectral, commercial cameras available for UAVs,
knowledge about their performance and image processing is in-
complete. However, conventional RGB cameras and photogrammetric
settings and process to obtain the derived geomatic products are per-
fectly known and are easy to use. Currently, VIs based on wavelength in
the visible spectrum are widely used, e.g., Gitelson et al. (2002) ex-
pended considerable efforts to describe the multispectral properties of
the wheat canopy by comparing VIs, such as visible atmospherically
resistant index (VARI), and mostly used the NDVI. Other authors, such
as Rasmussen et al. (2016) and Zhou et al. (2017), assessed VIs derived
from RGB cameras versus traditional multispectral VIs obtained from
multispectral sensors mounted on UAVs for accurate crop monitoring.
Synergies between indices derived from satellite imagery and meteor-
ological parameters have been evaluated to predict cereals yield in
recent times: e.g. Sarma et al. (2008) developed a statistical mode of
agro-climatic model (annual rainfall, southern oscillation index, sea
surface temperature, and GDD) combined with NDVI in predicting rice
yield in India, Savin and Isaev (2010) used a model where inputs
variables were NDVI derived from MODIS and temperature and in-
cident solar radiation. Other authors, such as Vicente-Serrano and
Cuadrat-Prats (2006) combined drought indices with NDVI retrieved
from AVHHR to predict wheat and barley yield four months before
harvesting. These studies highlighted the significance of meteorological
variables based of temperature and GDD, precipitation, and solar ra-
diation as predictive models. However, no reference has been found
that combines the use of very high-resolution remote sensing obtained
with UAVs with agro-climatic data to improve crop monitoring.

Accurate real time biomass estimation is crucial to improve crop
management and thus farmers’ profitability. Based on experience,
consumer-grade RGB cameras can provide very reliable information
about crop growth status, such as green canopy cover (GCC), LAI and
plant height, among others, (Ballesteros et al., 2018, 2015b; Ballesteros
et al., 2014). This research led to the assessment of the accuracy of the
combined use of agro-climatic information and very high-resolution
geomatic products obtained with UAVs to estimate maize biomass.
Specific objectives were: 1) to evaluate the traditional used VIs about
significance for maize biomass estimation; 2) to establish and evaluate
models based on combining agro-climatic variables, reference evapo-
transpiration (ETo) and GDD, and the proposed VIs

2. Materials and methods

2.1. Study area

The study was carried out in Tarazona de La Mancha (Albacete,
Spain) (Fig. 1) which is located in the hydrological unit (H.U.) 08.29.,
during the seasons 2010–2011 and 2011–2012. This H.U. is located in

Fig. 1. Location of the commercial maize field in Southeastern Spain.
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