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A B S T R A C T

A model for downscaling SMOS (Soil Moisture Ocean Salinity) soil moisture products is developed by using
multi-temporal dual-polarized (HH+HV) C-band SAR data. In this model, the effect of vegetation on soil
moisture retrieval from SAR data is minimized by using the water-cloud model (WCM), in which vegetation
contribution is quantified using the backscatter coefficient of HV polarization. The wavelet transform is used to
fuse high resolution Sentinel-1A SAR backscatter with low resolution SMOS soil moisture, where the difference
in spatial heterogeneity between scales is also accounted for. The influence of soil surface roughness is elimi-
nated by using multi-temporal data. The multi-temporal SMOS soil moisture and dual-pol Sentinel-1/SAR data
are the only inputs of this downscaling model. The model is tested in southern Ontario, Canada to downscale
40 km resolution SMOS soil moisture to 1.25 km and 2.5 km resolutions. The downscaled results show good
agreements with the in-situ soil moisture collected in May and July of 2016 with an unbiased root-mean-square-
error (RMSE) of 0.045m3/m3 and 0.047m3/m3 and a coefficient of determination (R2) of 0.54 and 0.70 at
1.25 km and 2.5 km resolutions respectively. The results suggest that the model can be applied for C-band at
regional scales to provide continuous soil moisture mapping at higher resolutions. The high revisit frequency of
the up-coming Radarsat Constellation Mission (RCM) combined with its large areal coverage characteristics are
ideal for the generation of downscaled products.

1. Introduction

Soil moisture is a key component in the water cycle. The retrieval of
continuous soil moisture over a large area is important in the under-
standing and modelling of various applications such as hydrology,
agriculture, meteorology, climatology, and flood forecasting (Baghdadi
et al., 2008; Wagner et al., 2007; Wang et al., 2007; Wang, 2008;
Munoz-Sabater et al., 2016). With high temporal and spatial variations,
reliable soil moisture data over large areas is difficult to obtain from a
sparse network of ground-based in-situ measurements. Although the
problem is being addressed with the development of passive microwave
remote sensing techniques, which can be used to obtain soil moisture
from regional to global scales and at a temporal resolution of days,
current passive microwave satellites in orbit, such as Soil Moisture
Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP), have
coarse spatial resolutions (∼40 km), which limit their soil moisture
products in applications such as crop management, localized drought
monitoring, and fine-scale water budget assessment and ecological

modelling (Hanesiak et al., 2011; Wang et al., 2014a,b).
A number of studies have made attempts to downscale the coarse

resolution of passive microwave soil moisture products by using op-
tical/thermal data (Merlin et al., 2008; Srivastava et al., 2013; Piles
et al., 2014). These studies developed several downscaling methods and
have generated reliable soil moisture products at high spatial resolu-
tion. A characteristic of these methods is that they utilize multiple data
sources and long-term records of the optical/thermal data (Peng et al.,
2017). Because of the nature of optical sensors, however, these methods
are constrained by several environmental factors, such as cloudy sky
conditions, cloud shadows, haze, and smoke from wildfires, etc. An
alternative approach for downscaling passive microwave soil moisture
is through the use of high resolution Synthetic Aperture Radar (SAR)
imagery. The greatest advantage of the SAR data is the high sensitivity
to soil moisture with large contrast of the microwave relative permit-
tivity between dry soil (ε=2–3) and water (ε=80) (Ulaby et al.,
1986), and the ability of SAR signals to penetrate cloud, haze, and
smoke; therefore, SAR is able to observe the earth’s surface in all
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weather conditions, day and night. The soil moisture retrieval from
SAR, however, is highly affected by vegetation cover, soil surface
roughness, and SAR parameters including wavelength, incidence angle,
and polarization. In order to overcome these limitations of SAR ob-
servations on soil moisture retrieval, several algorithms, such as change
detection methods (Njoku et al., 2002; Piles et al., 2009; Das et al.,
2011; van der Velde et al., 2015) and a Bayesian merging method (Zhan
et al., 2006), have been proposed to combine passive microwave data
and SAR data to generate reliable high resolution soil moisture data.

Among various active-passive combined methods, the most often-
used is the change detection algorithm. Change detection is based on
the near linear relationship between SAR backscatter and volumetric
soil moisture. It assumes the effect of vegetation and surface roughness
on observed backscatter are consistent between acquisitions. The
change detection method was first proposed by Njoku et al. (2002) for
the retrieval of soil moisture from passive and active L-band system
(PALS) imagery collected during the Southern Great Plains Experiment
in 1999. Narayan et al. (2006) expanded the method to retrieve high
resolution soil moisture by using the L-band PALS system passive data
and airborne SAR (AIRSAR) data obtained from the Soil Moisture Ex-
periment 2002 (SMEX02) over agricultural landscapes. Piles et al.
(2009) further expanded the method by using it in an observation
system simulation experiment (OSSE) to obtain significantly higher
resolution soil moisture values with reduced retrieval uncertainties in
comparison to using the passive microwave-only method. Das et al.
(2011) continued in the development of the change detection algorithm
and developed a new method, which was proposed as the baseline al-
gorithm for the SMAP 9-km combined active/passive soil moisture
product. The advantage of this baseline method is that it provides an
absolute soil moisture rather than relative soil moisture change ob-
tained by previous change detection methods.

The change detection algorithms either assume scale-invariance of
spatial heterogeneity (Piles et al., 2009) or introduces new scale-in-
variant parameters for describing spatial heterogeneity (Das et al.,
2011, 2014). However, natural homogeneity within a passive micro-
wave image pixel (e.g. SMOS/SMAP) rarely exists and the hetero-
geneity changes as the image’s resolution changes. The heterogeneity of
backscatter variability at a specific resolution cannot be inferred to si-
milarly represent other resolutions. Therefore, it is very important to
account for the spatial heterogeneity in the downscaling process. The
issue of heterogeneity at variable scales could be resolved by using
wavelet transform in the downscaling process. Wavelet transform is a
powerful technique for fusing one image of high spatial resolution with
another of lower spatial resolution in remote sensing discipline, to
adequately characterize spatial heterogeneity across scales.

Most of these change detection algorithms were developed using L-
band SAR data since the low frequency penetrates further through ve-
getation/soil than C-band and X-band, and can minimize the effect of
vegetation canopy and surface roughness. The L-band SAR that was
deployed in SMAP, however, stopped transmitting in July 2015.
Currently, ALOS-2/PALSAR is the only long wavelength (L-band) SAR
sensor in orbit. Since its data is less frequently acquired especially for
regions outside Japan, the use of ALOS-2/PALSAR is considerably re-
stricted for operational soil moisture retrieval, especially in North
America. Sentinel-1A, Sentinel-1B and Radarsat-2, which are C-band
SAR satellites currently in orbit, can provide routine observations of
Earth’s surface over large areas, especially in Canada. Radarsat
Constellation Mission (RCM) will further expand the availability of
current C-band SAR satellite observations, and significantly improve
revisit capabilities. C-band has a short wavelength (∼5.6 cm wave-
length) that exhibits backscatter signal interaction from both the ve-
getation canopy and soil. Soil moisture retrieval using C-band needs
accurate characterization of vegetation and surface roughness
(Gherboudj et al., 2011). Therefore, the existing change detection al-
gorithms may be problematic when C-band SAR is used, especially
considering these algorithms assume vegetation is unchanged between

acquisitions. This may invalidate change detection algorithms (even
with L-band SAR data) for cropland regions where the land surface
vegetation varies rapidly over periods as short as several days (i.e.
during the growing season).

A number of SAR backscatter models have been proposed to sepa-
rate the backscattering contributions of soil and vegetation (Ulaby
et al., 1986; Oh, 2004; Zribi et al., 2005; Bai and He, 2015). These
models are generally categorised into three groups: theoretical, em-
pirical, and semi-empirical. The theoretical models, such as the Integral
Equation Model (IEM) and the advanced IEM model (Fung and Chen,
1992; Fung, 1994), are complicated and require a large number of
parameters. On the other hand, the empirical models are simple to
develop but may have limitations in applicability for other sites due to
their data and site dependency (Zribi et al., 2005; Gorrab et al., 2014).
The semi-empirical models begin with a physical basis and then use
simulated or experimental datasets to simplify the theoretical back-
scattering models (Petropoulos et al., 2015). The semi-empirical Water
Cloud Model (WCM), which simulates the backscattering coefficient
(HH or VV polarizations) as a function of soil properties (moisture and
roughness) and vegetation properties (e.g. biomass, leaf area index), is
often used to separate vegetation from soil backscatter contributions
due to its simplicity. However, WCM’s performance relies on the
characterization of surface roughness and vegetation. Various vegeta-
tion descriptors such as plant height, leaf area index (LAI), vegetation
water mass, and normalized difference vegetation index (NDVI) have
been used in quantifying vegetation parameters in the WCM (Bai and
He, 2015). These vegetation descriptors either come from in-situ mea-
surement or optical satellite sensors. The use of in-situ measured ve-
getation parameters, however, makes it difficult for operational pur-
poses due to the cost and logistic constraints, especially in remote areas.
On the other hand, the use of remote sensing vegetation parameters
from optical satellite sensors is limited by the weather conditions such
as cloud and haze. Our recent study showed that C-band SAR HV
backscatter can be used as an alternative to optical image derived ve-
getation parameters in the WCM for soil moisture retrieval. This makes
it possible to use parameters derived from SAR data alone to char-
acterize vegetation in the WCM.

The objective of this study is to produce high resolution soil
moisture by downscaling coarse resolution SMOS soil moisture using
high resolution C-band Sentinel-1 SAR data. In this study, we propose a
downscaling model, in which WCM is used to minimize the influence of
vegetation on soil moisture retrieval for C-band SAR data and wavelet
transform is used to account for spatial heterogeneity across scales. The
downscaling model is a further development of the change detection
algorithm, assuming that surface roughness remains stable for a specific
period of time. The downscaling model also addresses the aforemen-
tioned problems of existing downscaling algorithms including that they
are: 1) not applicable to C-band SAR with respect to soil moisture re-
trieval, and 2) not suitable for crop lands where vegetation changes
rapidly. This study would provide a practical tool for operational
mapping of soil moisture at high resolution over large areas by using
SMOS/SMAP satellites and future SAR missions such as RCM.

2. Methodology

In this section, we first briefly introduce a simplified WCM and the
wavelet transform, which are used in the downscaling model, and
provide details about the downscaling model. This is followed by the
brief description of the methods for model validation.

2.1. Simplified water-cloud model (WCM)

The water-cloud model, initially developed by Attema and Ulaby
(1978), considers the vegetation canopy as a cloud containing water
droplets randomly distributed within the canopy. It provides solutions
for the backscattering coefficients for the vegetation canopy as well as
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