
Contents lists available at ScienceDirect

Int J Appl Earth Obs Geoinformation

journal homepage: www.elsevier.com/locate/jag

Local adjustments of image spatial resolution to optimize large-area
mapping in the era of big data

François Waldnera,⁎, Gregory Duveillerb, Pierre Defournya

aUniversité Catholique de Louvain, Earth and Life Institute-Environment, Louvain-la-Neuve, Belgium
b European Commission, Joint Research Centre (JRC), Directorate D – Sustainable Resources – Bio-Economy Unit, via E. Fermi 2749, I-21027 Ispra, VA, Italy

A R T I C L E I N F O

Keywords:
Spatial resolution
Sentinel-2
Cropland
Landscape fragmentation
Point spread function
Optimal pixel size

A B S T R A C T

Sentinel-2 has opened a new era for the remote sensing community where 10-m imagery is freely available with
a 5-day revisit frequency and a systematic global coverage. Having both frequent and detailed observations
across large geographic areas are ideal characteristics that can potentially revolutionize applications such as crop
mapping and monitoring. However, such large volumes of high-resolution data pose challenges to users in terms
of problem complexity, computational resources and processing time, beckoning the increasingly relevant
question: at which resolution should this imagery be processed? Here, we develop a methodology to characterize
resolution-dependent errors in cropland mapping and explore their behavior when we move across spatial scales
and landscapes, taking special care to include the effects of the instrument's Point Spread Function (PSF). Results
show how local upscaling of 10-m imagery, e.g., from Sentinel-2, to 30 m mitigates most the adverse effects
generated by the PSF when comparing it to native 30-m imagery, e.g., from Landsat-8. Extending this logic, we
demonstrate for two nationwide cases how maps can be calculated showing the optimal spatial resolution that
keeps resolution-dependent errors below a user-defined threshold. Based on these maps, we estimate that 31% of
Belgium and 59% of South Africa could be processed at 20 m instead of 10 m, while keeping the increase of
resolution-dependent errors below 3%. These local resolution adjustments lead to a reduction in data volume
and processing time by 23% and 44%, respectively.

1. Introduction

The Sentinel-2 constellation has opened a new era for satellite Earth
Observation. Systematic acquisition at decametric spatial resolution,
i.e., 10 m, with 5-day revisit frequency are now available at no cost for
the entire globe. This unique observational configuration guaranteed by
the operational commitment of the Copernicus Program of the
European Union has the potential to revolutionize many applications as
the traditional bottleneck of data availability is being lifted. This may
bring a paradigm shift towards more data-intensive scientific research
and discovery (Hey et al., 2009), as well as enabling the development of
many new services for society as a whole.

This great opportunity to increase knowledge of the Earth System
also comes with great challenges for both scientists and information
technology experts (Nativi et al., 2015). In operational applications, a
new bottleneck of a different nature has emerged: timeliness. Data
availability can take the form of a data tsunami, posing serious chal-
lenges to store, process and deliver remote sensing products to users in
due time. This can be a problem for stakeholders as diverse as cloud

services providers, who need to optimize on-the-fly data processing and
delivery across the Internet, and users with limited computational and
communication infrastructures.

Yet, for many applications, the spatial resolution requirements may
vary spatially depending on the structure and fragmentation of the
landscape (Ozdogan and Woodcock, 2006; Duveiller and Defourny,
2010; Löw and Duveiller, 2014; Waldner and Defourny, 2017). In this
new data-rich environment, could we not reduce the burden of overload
by finding an optimized resolution that can be spatially adjusted, and to
which imagery can be aggregated to, thereby reducing the cost and
time of storage, processing, and distribution while minimizing the loss
of precision?

Finding the optimal pixel size is a general subject of interest in
cartography and geosciences (Hengl, 2006). In the satellite remote
community, it has been a particularly recurring and intense topic of
investigation. Various authors have explored the question by ag-
gregating fine spatial resolution imagery to increasingly coarser re-
solutions whilst analyzing the behavior of specific metrics calculated at
every step (Woodcock and Strahler, 1987; Marceau et al., 1994; McCloy
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and Bocher, 2007; Duveiller and Defourny, 2010; Löw and Duveiller,
2014). Others have utilized geostatistics and variograms to identify an
optimal spatial resolution based on the landscape's spatial hetero-
geneity (Atkinson and Curran, 1995, 1997; Curran and Atkinson, 1998;
Garrigues et al., 2006). However, the question has typically been
framed in a context of identifying the coarsest tolerable spatial re-
solution for a given application, so as to guide the choice of an in-
strument/platform amongst those available that satisfy other criteria
(such as sufficient revisit frequency). That question can now be asked
from the point of view of data volume reduction. We have moved from
a situation dominated by what Strahler et al. (1986) described as an L-
resolution model to that of an H-resolution model. In the H-resolution,
image pixels are smaller than the actual objects in the image (i.e., the
crop specific fields for agricultural applications) whereas, in the L-re-
solution, the pixel size exceeds the object size. This has a strong impact
on image classification. When the image objects are smaller than the
pixels (L-resolution), one faces the typical challenge of classifying
mixed pixels. But classification can also be difficult when image objects
are larger than the pixels (H-resolution), as the within-class variance is
likely to be high and could thus decrease class separability and accuracy
(Marceau et al., 1994). This has progressively led to the emergence of
the geographic object-based image analysis (GEOBIA) paradigm
(Blaschke et al., 2014). However, a major problem in GEOBIA is the
additional computational cost and parametrization that are required for
image segmentation. Furthermore, typical region-growing segmenta-
tion is generally not easily scalable and transposable. Therefore, a
strong incentive remains in exploring how optimizing pixel size could
reduce data size while retaining the squared structure of the pixels,
such as with quad-tree compression algorithms (Spann and Wilson,
1985), but maintaining the properties of the imagery necessary for a
given application, such as land cover classification.

The objective of this study is to evaluate the feasibility of local
adjustments of image spatial resolution to reduce the data volume and
thus optimize data processing and delivery in the context of large-area
mapping. By local adjustments, we mean to coarsen the native resolu-
tion of images to resolutions according to the landscape complexity. To
achieve this, we develop a methodology to characterize resolution-de-
pendent errors and explore their behavior across spatial scales and
landscape fragmentations, taking special care to model the effects of the
Point Spread Function (PSF) of the sensor. We choose to focus on
cropland mapping at country scale, an application that has strong re-
quirements in terms of accuracy, timeliness, and frequency of product
delivery. The final outcomes are maps of the coarsest acceptable spatial
resolution that would maintain resolution-dependent errors under a
given threshold, along with the associated gains in computing time and
storage size.

2. Background

Before addressing this question directly, it is worth recalling some
key concepts about spatial resolution and scale in remote sensing. The
scale can be defined as the number and the size of the spatial sampling
units used to partition a geographic area (Lam and Quattrochi, 1992).
However, a distinction must be made between the physical sampling of
the observations by the instrument and the spacing of the grid in which
the data is provided. Here, we refer to the on-ground distance between
the centers of two observations as the Ground-projected Sampling In-
terval (GSI; see Fig. 1 and Table 1 for definitions of the main scale-
related terms).

The spacing between the ground projection of two pixels is referred
to as pixel size (and denoted ν). These can differ even on a single scan
line on whiskbroom instruments such as the MODerate resolution
Imaging Spectroradiometer (MODIS), where increasing viewing angle
combined with Earth's curvature lead to larger GSI at the edge of the
swath than at nadir, while the pixel size of the delivered image remains
the same. Another common misconception is that the shape of the

observation footprint corresponds to the rectangular ground projection
of the pixel (Cracknell, 1998). Instead, a substantial portion of the
measured radiance originates from surrounding areas (Townshend,
1981; Forster and Best, 1994). At every ground sampling interval, a
detector measures the incoming radiance within its instantaneous field
of view (IFOV) during a specific time interval. The IFOV is an angular
measure and its ground projection is known as the GIFOV. The width of
the GIFOV does not exactly match the GSI because of several factors
such as the optics of the instrument, the electronics of the detector, and
the image motion (Markham and Barker, 1986; Schowengerdt, 2007).
Thus the image of the scene viewed by the sensor is not a completely
faithful reproduction of the real ground features. Small details are
blurred relative to larger features and this blurring effect can be char-
acterized by the net sensor point spread function. The PSF is sometimes
described by the Modulation Transfer Function (MTF) which is its
equivalent in the frequency domain. Several studies investigated the
impact of the PSF/MTF on land cover classification (Huang et al.,
2002), sub-pixel landscape feature detection (Radoux et al., 2016), and
sub-pixel class proportion estimation (Huang et al., 2002).

3. Data and study sites

To best illustrate our approach, we require national-scale study sites
that offer varying field sizes and landscapes, and for which accurate
field boundary data are available. We identify Belgium and South Africa
as two contrasting countries that fit these selection criteria. Belgium is
located in the northwest of Europe, between 51°30′ and 49°30′N, and
2°33′ and 6°24′E. In spite of its small size (30,528 km2), agricultural
landscapes are quite diverse. They occupy almost 60% of the land, with
a decreasing the proportion of cropland to pasture along the North-
South gradient. South Africa is located on the southern tip of the
African continent and lies between latitudes 22° and 35°S, and long-
itudes 16° and 33°E spreading over 1,221,037 km2. Only 12% of South
Africa's land is used for crop production, and only 22% of this is high-
potential arable land. The main growing regions lie along the fertile
soils of the Western Cape and KwaZulu-Natal provinces. Both small-
holder and large-scale industrial farming systems are present.

Nationwide field boundary datasets are available for both countries
in the form of vector files of field boundary polygons. Field boundary
polygons describe the smallest management unit for crop production.
Each digitized field typically corresponds to a single crop, except in
mixed-cropping systems. These vector datasets are first rasterized to 3
m pixels, which corresponds approximately to the spatial resolution at
which the fields were originally digitized. To avoid having to process
the entire national extent, a regular sampling scheme is adopted to
select representative blocks of 3 m pixels that will serve to characterize
the spatial resolution requirements at those specific sample areas. The
rationale to define the extent of the sample blocks is that these should
be larger than the size of the spatial features of interest (i.e., the fields)
by a couple of orders of magnitude, but remain smaller than the agro-
ecological region that characterizes the spatial patterns of the land-
scape. In practice, this amounts to sample blocks of 5,000×5,000
pixels, or 15× 15 km, over which a binary mask is extracted which
takes the value of 1 where it covers the target fields and 0 otherwise.
Sample blocks with less than 100 cropland pixels are discarded. The
grid spacing isadjusted for each country to better represent their re-
spective landscape variability, resulting in grids with sample blocks of
the same size but with different densities. In total, 380 sample blocks
were available for South Africa, and 120 for Belgium. These will hen-
ceforth be referred to as very high resolution (VHR) binary maps.

4. Methods

This section is organized into four parts. In Section 4.1, we recall the
concept of the Pareto boundary and introduce how it can be extended
across scales. In Section 4.2, we detail the three different modeling
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