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A B S T R A C T

Interannual variability in the global carbon cycle is largely due to variations in carbon uptake by terrestrial
ecosystems, yet linkages between climate variability and variability in the terrestrial carbon cycle are not well
understood at the global scale. Using a 30-year satellite record of semi-monthly leaf area index (LAI), we show
that four modes of climate variability − El Niño/Southern Oscillation, the North Atlantic Oscillation, the
Atlantic Meridional Mode, and the Indian Ocean Dipole Mode − strongly impact interannual vegetation growth
patterns, with 68% of the land surface impacted by at least one of these teleconnection patterns, yet the spatial
distribution of these impacts is heterogeneous. Considering the patterns’ impacts by biome, none has an ex-
clusively positive or negative relationship with LAI. Our findings imply that future changes in the frequency and/
or magnitude of teleconnection patterns will lead to diverse changes to the terrestrial biosphere and the global
carbon cycle.

1. Introduction

Climate fluctuations affect the terrestrial biosphere across seasonal
to multi-decadal timescales (Stenseth et al., 2003), while vegetation on
the land surface helps regulate the flow of energy, carbon, and water
through the climate system. This biosphere-atmosphere coupling will
influence the rate of increases in greenhouse gas concentration in the
atmosphere, the pace of climate change, the magnitude and scope of
biodiversity loss, and the interconnection between food, water, and
energy that is the basis of food security this century (Bonan, 2008;
Ogutu and Owen-Smith, 2003). However, the sign and magnitude of
atmospheric effects on land surface vegetation remains poorly con-
strained, partly because biosphere-atmosphere coupling depends
strongly on season, biome, and timescale, and biosphere-atmosphere
feedbacks can have downstream effects on ecological communities (e.g.
Charrette et al., 2006; Maza-Villalobos et al., 2013; Ogutu and Owen-
Smith, 2003). Further uncertainty arises from a mismatch of spatial and
temporal scales at which meteorological and ecological data are col-
lected. Climate datasets typically span several decades with near global
coverage at 10–100 km spatial resolution (Phillips et al., 2014), while
long-term ecological monitoring studies often focus on finer spatial
grain sizes and smaller spatial extents. Remotely sensed data can be
used to bridge these scale gaps because they span more than three
decades (AVHRR/MODIS/VIIRS, LandSat), and they are produced at

spatial resolutions that fall between meteorological and in-situ ecolo-
gical monitoring scales. Such products permit us to analyze how var-
iations driven by large-scale climate phenomena affect global vegeta-
tion activity via large scale climate fluctuation patterns like
hemispheric and global teleconnections.

Teleconnections patterns are persistent atmospheric circulation
patterns that span large distances. They are defined statistically
(Barnston and Livezey, 1987) and can be used to characterize changes
in local and regional “packages of weather” (Stenseth et al., 2003) as-
sociated with different states of climate modes. Two well known tele-
connection patterns are El Niño-Southern Oscillation (ENSO) and the
North Atlantic Oscillation (NAO). Connecting vegetation responses to
teleconnections patterns is challenging because ecosystems may react to
different meteorological variables, like temperature or precipitation,
across multiple time lags (McPhaden et al., 2006). For example, a po-
sitive wintertime NAO is correlated with earlier, higher than average
springtime vegetation growth in Europe (Li et al., 2016). Despite these
obstacles, weather events associated with ENSO and the NAO have been
tied to changes in ungulate populations in South Africa (Ogutu and
Owen-Smith, 2003), butterflies in Borneo (Charrette et al., 2006), forest
succession in Mexico (Maza-Villalobos et al., 2013), and more (Stenseth
et al., 2003). While many of the studies focused on connections between
teleconnection patterns and the biosphere have focused on ENSO, re-
cently some studies have expanded to include other indices at global
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scales. For example, Zhu et al., (2017) compared fifteen teleconnection
patterns to the output from nine dynamic global vegetation models with
standardized forcings. They found that the teleconnections were
strongly connected to modelled gross primary productivity (GPP), with
most areas strongly linked to ENSO, the Atlantic Meridional Mode, and
the Pacific Decadal Oscillation. Gonsamo et al. (2016) compared the
30 year NDVI record (NDVI3 g; Pinzon and Tucker, 2014) to eight tel-
econnection indices. These authors also compared their set of tele-
connection indices to net primary productivity from a coupled Earth
system model and found that the model was unable to capture the
spatial patterns observed in the data.

Instead of testing a large number of possibly cross-correlated tele-
connection patterns (Quadrelli and Wallace, 2004), here we elected to
document the impacts of two well-studied global teleconnections pat-
terns—ENSO and NAO − and two infrequently considered climate
modes − the Indian Ocean Dipole Mode (IODM) and the Atlantic
Meridional Mode (AMM). We compare these four teleconnection pat-
terns to land surface vegetation over a time span of 30 years, using the
AVHRR-derived Leaf Area Index (LAI3 g) data set (Zhu et al., 2013).
The temporal span of this product allows us to consider global con-
nections between the land surface and the climate system that are not
possible with shorter time series or locally focused analyses. These four
teleconnection patterns represent spatially distinct climatological pat-
terns from around the globe.

ENSO, perhaps the most well-known climatological pattern to
ecologists and natural resource managers, is defined by changes in sea
surface temperatures (SSTs) in the tropical Pacific, known as El Niño,
which is linked to fluctuations in the distribution of atmospheric mass
(called the Southern Oscillation; hence the term “El Niño/Southern
Oscillation” or ENSO). These variations in the coupled ocean-atmo-
sphere system set up “ripples” in the troposphere, which in turn affect
global circulation patterns downstream. ENSO is associated with
drought conditions in areas that are usually wet (i.e. Indonesia,
southern Africa, India) and heavy rains in dry regions like the equa-
torial central Pacific, California, and the U.S. Gulf Coast (Rasmusson
and Wallace, 1983). Here we describe ENSO using the Oceanic Niño
Index (ONI) for December-January-February (DJF) which is a 3-month
mean of sea surface temperature (SST) anomalies in the equatorial
Pacific (Niño 3.4 region: 5°N–5°S, 120°–170°W (Huang et al., 2015)).
Further increases in greenhouse gas concentrations are expected to lead
to changes in the mean state of the Pacific Ocean and therefore possibly
lead to more strong El Niño and La Niña years with fewer mild years
(Cai et al., 2015).

The NAO is a measure of the difference in atmospheric conditions
between the subtropical Atlantic and the Arctic (Stenseth et al., 2003).
During its positive phase it has been associated with above average
temperatures in the Eastern U.S. and northern Europe and below
average temperatures in southern Europe and the Middle East and the
reverse in the negative phase. Positive phases of the NAO are also as-
sociated with higher precipitation in northern Europe, lower pre-
cipitation in southern Europe. Similar to ENSO, a wide range of eco-
logical impacts have been attributed to the NAO (de Beurs and
Henebry, 2010, 2008; Vicente-Serrano and Trigo, 2011). Feedbacks
between the NAO and future climate projections are complex, however,
it is possible that a weakening of the NAO could lead to reduced losses
of sea ice and fewer tropical storms (Delworth et al., 2016).

The AMM is a measure of SST anomalies in the tropical Atlantic
Ocean where SSTs are warmer than usual in the tropical North Atlantic
and cooler than usual in the tropical South Atlantic (Nobre and Shukla,
1996). This change in SSTs in turn impacts the location of the Inter-
tropical Convergence Zone (ITCZ) and can change the timing and
magnitude of precipitation events throughout the tropics, particularly
in northeastern Brazil and the Sahel (Foltz et al., 2012). Because
changes in the AMM influence wind patterns, strong AMM events are
also associated with increased hurricane activity (Vimont and Kossin,
2007). Few studies have been done of the direct impacts of the AMM on

the terrestrial biosphere, however, recent work has suggested that the
AMM may play a role in tropical forest dynamics through a combina-
tion of hurricane and drought impacts (Chen et al., 2015).

The IODM (Saji et al., 1999) is a pattern of variability originating in
the Indian Ocean, with cool SSTs near Sumatra linked to warm SSTs
near East Africa. While somewhat correlated with ENSO (Saji and
Yamagata, 2003), the impacts of the IODM appear to be much more
focused on the countries surrounding the Indian Ocean − anomalously
strong rainfall events in East Africa, central India, and Central/Eastern
China are all much more closely tied to the IODM than to ENSO
(Marchant et al., 2006; Pervez and Henebry, 2015). Importantly, future
predictions for the IODM suggest that while its frequency is unlikely to
change, the intensity of events will probably increase in coming dec-
ades under the influence of climate change (Cai et al., 2013).

Since these teleconnection patterns can often generate conflicting
conditions for optimal plant growth (e.g., cooler temperatures and more
rainfall), their expected impact on the biosphere is unclear. Each tele-
connection is characterized by both a time series “index” of its ampli-
tude through time, as well as a spatial map of its expression in various
meteorological fields used to define it. Here we focus on the temporal
indices of each pattern to isolate their influence on the terrestrial bio-
sphere through time, across space, and within the annual cycle.

This paper addresses three questions related to the interactions
between teleconnection patterns and the terrestrial biosphere: 1) What
fraction of global interannual variation in LAI can be linked to two
common and two less well studied teleconnection patterns? 2) How do
the spatial patterns of impact vary among the different teleconnections?
3) How can we map these connections while taking account for tem-
poral autocorrelation in the data in a simple and consistent manner?

2. Materials and methods

To assess linkages between the four teleconnection indices and local
vegetation, we calculated correlations between each index averaged for
December, January, and February (DJF) of a given year and LAI3 g
minimum, mean, and maximum values for the subsequent three-month
intervals (JFM, FMA, through DJ2F2 with J2F2 being from the following
year). All analyses were performed at 0.25° resolution. We used a Monte
Carlo approach to eliminate small patches of possibly spurious corre-
lations, likely to be due to temporal autocorrelation. Finally, we ag-
gregated the global correlation fields (36 per teleconnection pattern) to
produce single maps of the strongest overall correlations and their
seasonality.

Correlation Analysis. The central goal of this paper was to map the
correlations between teleconnection pattern indices and variations in
the land surface in a way that is permissive enough to capture small but
significant relationships, but simple enough to be generalized and in-
terpreted. All analyses were performed in R (RCoreTeam, 2015) using
the raster (Hijmans and van Etten, 2013), rgdal (Bivand et al., 2013),
and ncdf4 (Pierce, 2015) packages. All maps were made in ArcGIS
10.2.2. Fig. S1 shows a schematic of the analysis process.

In order to have a long enough time series to perform robust cor-
relations, we used the AVHRR derived leaf area index data set (LAI3 g
(Zhu et al., 2013)), which is a global data set of LAI for the complete
years of 1982–2011 twice per month at twelfth-degree scale. To sim-
plify data processing and to average over small scale changes in local
vegetation, these data were rescaled (averaged) to quarter degree re-
solution. If a 0.25° grid cell had less than 60% coverage it was removed
from further analysis, thus many coastal areas were excluded from
analysis. Teleconnection pattern indices were obtained from the U.S.
National Oceanic and Atmospheric Administration (NOAA, 2017,
2015a, 2015b, 2015c). To simplify comparisons, we selected the three
month December-January-February period (‘DJF’; averaged) of each
index to compare to subsequent months’ LAI values. DJF was selected
for these indices as it is the 3-month period in the first half of the year
with the highest interannual standard deviation in all four indices. Fig.
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