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A B S T R A C T

This study presents an automatic method to identify tree stems, and estimate tree heights and diameters
from terrestrial laser scanning (TLS) data. The method is based on the isolation and vertical continuity of
the stems. First, a height-normalized version of the point cloud is created. From this, stems are in-
dividualized, an iterative process is applied to the points at breast height for estimating diameters, and
tree heights are calculated after denoising and clustering the points of each tree. The method was tested in
three different sites. All the elements detected as trees were actual trees, and more than 99% of the trees in
the plots were detected. Root mean square error (RMSE) of the estimated diameters at breast height (DBH)
ranged from 0.8 to 1.3 cm in the test plots, and total tree height (TH) RMSE ranged from 0.3 to 0.7 m. In
the cases studied, the algorithm showed robustness to the presence of steep or irregular terrain, the
presence of low vegetation and artifacts at breast height, the indistinct use of individual or multiple scans,
and tree density in the plot.

1. Introduction

Forests provide a wide range of resources, ecological services, and
contribute to diversification of rural economies. They are essential to
preserve biodiversity, hydrological assets and soils, and to mitigate the
effects of climate change (Trumbore et al., 2015; Tubiello et al., 2015).
In this frame, forest management systems play a significant role. The
detailed knowledge of forest resources and their monitoring, as well as
the effect of treatments that are applied to them should be the base to
support any decision-making at different levels and goals such as fur-
ther silviculture treatments, forest harvesting, climate change impact
evaluation, fire modelling, carbon stock estimation, etc (Keenan et al.,
2015; MacDicken, 2015). The main objective of any forest inventory is
to measure the wood volume, biomass or species diversity, and the
monitoring of any of these parameters. Most forest inventories are
based on the analysis of sampling plots, and the results are used to infer
the global parameters of the forest cover under study. The precision of
the derived global parameters is dependent on the representativeness,
distribution and quantity of the considered samples (Barrett et al.,
2016, Kangas and Maltamo, 2006).

Forest sampling plots are typically small circular areas with a
radius of between 4 and 15 m (Liang et al., 2016). The most com-
monly recorded attributes are: species, diameter at breast height
(DBH) and total tree height (TH), although several other parameters
are also usually measured in the field or derived from such data (e.g.
leaf area index, stem curve, crown diameter, or physiognomy of the
lowest branches). Once all the trees of the plots have been char-
acterized, the population values are interpolated or extrapolated into
the whole area under study. The conventional instruments for the
measurement of forest plots are calipers for trunk diameters and
hypsometers for total tree heights. In recent decades, the evolution of
these devices has consisted basically in the integration of digital
displays, internal memories, and data transfer systems. However,
they are still time-consuming, limited for the evaluation of large
areas, and operator-skill-dependent. Laser scanning technologies are
becoming an alternative to conventional devices, allowing a quali-
tative step forward in the improvement of the forest inventory pro-
cesses (Liang et al., 2016, Kangas and Maltamo, 2006).

The Light Detection and Ranging (LiDAR) systems became wide-
spread in the last two decades (Toth and Jóźków, 2016). First LiDAR
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devices were introduced on airborne platforms (Bufton, 1989; Flood
and Gutelius, 1997; Hyyppä et al., 2008). Then, they were adapted to
provide terrestrial static solutions, and, recently, mobile vehicles in
outdoor and indoor spaces are evolving rapidly (e.g. Hyyppä et al.,
2013). The application of aerial LiDAR systems (aerial laser scanners,
ALS) to forest measurements has been shown to be operative for the
evaluation of forest vegetation cover and its characterization. Specifi-
cally, the combined use of ALS and plot-level information has effec-
tively increased in the last few years, and proven to be effective for the
extraction of forest inventory parameters (Næsset, 2002, Næsset, 2007;
Vastaranta et al., 2013; Wulder et al., 2013; McRoberts et al., 2013).
However, ALS data is not yet extensively used for strategic forest in-
ventory assessments at a national level. Instead, they are used oper-
ationally for stand-level forest management inventories in Finland,
Norway and Sweden (Barrett et al., 2016). Several studies provide
different approaches to individual tree or plot-level characterization of
the vegetation cover from ALS data (e.g. Popescu et al., 2003, or Mundt
et al., 2007).

The use of ground-based remote sensing techniques, like terrestrial
laser scanning (TLS), often allows the observation of structures and
elements that are not visible from an aerial perspective (e.g. stems in
layered forests). Some approaches have been described to apply ter-
restrial laser scanning in dendrometric characterization (Bienert et al.,
2006; Liang et al., 2016; Wilkes et al., 2017). TLS systems provide
millimeter-level accuracy and a terrestrial point of view; consequently,
diameters at breast height and accurate stem models can be obtained.
Nevertheless, the proportional instrumental costs per area if compared
with aerial LiDAR reveal a potential for calibrating and evaluating data
obtained from airborne LiDAR systems, rather than being an affordable
and competitive technology for large scale forest inventory. In this
context, with the current state-of-the-art-technology, TLS data and ap-
proaches have their greatest potential at being used as a substitute for
traditional dendrometric methods at plot or individual tree level, and
further integration within extensive 3D forest models (e.g. point clouds
derived from aerial data). Liang et al. (2016).

Numerous recent studies provide solutions and algorithms for single
tree modelling from TLS data (Lefsky and McHale, 2008; Côté et al.,
2011; Moorthy et al., 2011; Dassot et al., 2012; Schilling et al., 2012;
Vonderach et al., 2012; Delagrange et al., 2014). These studies are
mainly applicable when trees stand separately, or, at least, with certain
isolation, and can provide a very high level of detail, including small
branches and leaves in some cases.

Plot-level algorithms based on TLS data are often focused on de-
tecting trees in sampling plots. Most of them provide information about
the location of the trees in a plot, basic dendrometric data, like DBH and
TH, and, frequently, individualized 3D models of each tree in the plot.
Information derived from the application of these algorithms is cur-
rently used for stand-level inventories and for the development and
update of allometric models. Moreover, some parameters that now are
estimated indirectly through allometric models (i.e. frequently related
to accurate wood or timber volume calculations) are becoming directly
measurable from TLS data. Comprehensive reviews in this field are
provided in Dassot et al. (2012) and Liang et al. (2016).

Individual tree detection in sampling plots is addressed in Maas
et al. (2008), Strahler et al. (2008), Liang et al. (2012a,b), Liang and
Hyyppä (2013), Yao et al. (2011), Lindberg et al. (2012), Astrup et al.
(2014), Olofsson et al. (2014), Kankare et al. (2015), Liu et al. (2017) or
Heinzel and Huber (2017) among others. Tree detection rates range
between 40 and 100%, and are clearly affected by (i) tree density (i.e.
in general, lower detection rates with higher tree densities), (ii) forest
structure (e.g. lower detection rates with dense low forest vegetation
and branches), and (iii) point density or distance to the sensor (i.e.
lower detection with occlusions, low point density and/or large dis-
tances to the TLS).

DBH is assessed in Maas et al. (2008), Yao et al. (2011), Liang et al.
(2012a), Lindberg et al. (2012), Liang and Hyyppä (2013), Olofsson

et al. (2014), Kankare et al. (2015), Koreň et al. (2017), Liu et al. (2017)
and Heinzel and Huber (2017). In these studies, DBH is calculated from
single scans, from multiple scans joined prior to DBH analysis, or
analyzed separately for further diameter comparison at each detected
tree location. Most of them use cylindrical or circular least squares
fitting methods (e.g. Hopkinson et al., 2004, or Henning and Radtke,
2006), although other strategies/approaches are also used. For ex-
ample, Mizoguchi et al., 2017 uses bicubic spline fitting, and Olofsson
et al. (2014) uses Hough transform and RANSAC (RANdom SAmple
Consensus) for circle fitting and DBH estimations. Miscalculations are
mainly due to the presence of artifacts at breast height (like branches,
leaves or low vegetation), or to the distance to the scanner for the
singlescan methods (Liang et al., 2016).

Tree height estimation (TH) from TLS data has been addressed in
Moskal and Zheng, (2011), Huang et al. (2011), Maas et al. (2008),
Fleck et al. (2011), Liang and Hyyppä (2013), and Olofsson et al.
(2014). In these previous studies, the existence or lack of points on the
top part of the trees is the main constraint of the process. In this way,
dense canopies (and the consequent lack of points on the treetops) lead
frequently to tree height underestimation. Tree height overestimation is
also frequent in dense plots, where small trees are often closely sur-
rounded by larger ones, and the treetops of the higher trees are assigned
to the former.

The main objective of this work is to develop an algorithm able to
detect trees in TLS datasets and obtain their position, height, and DBH.
The method must be fully automatic, improve the performance of
previous studies and traditional methods, and overcome some of their
limitations and drawbacks.

2. Methodology

The method consists in the identification and individualization of
the stems contained in the dataset (i.e. point cloud), and the subsequent
estimation of their position, diameter at breast height and total tree
height. In order to achieve this, a terrain model is automatically gen-
erated, and based on it, a height-normalized version of the point cloud
is created. Then, tree trunks are individualized based on their isolation
and vertical continuity. Finally, DBH and TH are estimated from the
height-normalized point cloud.

2.1. Terrain model and height-normalized point cloud

The horizontal extent of the point cloud is divided into square cells
following a regular grid. All the points within the limits of each cell are
identified and labeled, and the lowest elevations are extracted. The
elevation of the lowest point of each cell (excluding outliers) is com-
pared to the elevation of its eight closest neighbors. If the difference is
larger than a threshold that limits the vertical variation between
neighboring cells, the elevation of the cell is reduced to its lowest
neighbor. This process is repeated iteratively and traverses all the cells
until there is no cell whose elevation difference is larger than the pre-set
value (Pseudocode 1 ).

Fig. 1 shows an example of terrain modelling. The peaks in Fig. 1.A
(both over and beneath the terrain) are eliminated after applying the
iterative process, while the blank cells remain unchanged in Fig. 1.B.
The elevation difference threshold has to allow the presence of some
expected features on the terrain, such as the edge across the terrain
model.

An alternative version of the point cloud is created from the ele-
vation of the points and the terrain model. In this version, the original
point cloud is transformed as if the terrain were flat and horizontal. The
elevation of each cell in the terrain model is subtracted from the ele-
vation of the points inside the cell. The result is stored as an only one-
dimension vector, and the original XYZ coordinates remain invariant.
See Fig. 2 and Pseudocode 2 .
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