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A B S T R A C T

In this study, the coefficient of variation (CV) is introduced as a unitless statistical measurement for the clas-
sification of croplands using synthetic aperture radar (SAR) data. As a measurement of change, the CV is able to
capture changing backscatter responses caused by cycles of planting, growing, and harvesting, and thus is able to
differentiate these areas from a more static forest or urban area. Pixels with CV values above a given threshold
are classified as crops, and below the threshold are non-crops. This paper uses cross-polarized L-band SAR data
from the ALOS PALSAR satellite to classify eleven regions across the United States, covering a wide range of
major crops and climates. Two separate sets of classification were done, with the first targeting the optimum
classification thresholds for each dataset, and the second using a generalized threshold for all datasets to si-
mulate a large-scale operationalized situation. Overall accuracies for the first phase of classification ranged from
66%–81%, and 62%–84% for the second phase. Visual inspection of the results shows numerous possibilities for
improving the classifications while still using the same classification method, including increasing the number
and temporal frequency of input images in order to better capture phenological events and mitigate the effects of
major precipitation events, as well as more accurate ground truth data. These improvements would make the CV
method a viable tool for monitoring agriculture throughout the year on a global scale.

1. Introduction

As the earth is called upon to feed increasing numbers of people
with a limited supply of arable land and water, accurate, up-to-date
monitoring of global agriculture becomes an increasingly important
part of world stability for reasons of food security, economic stability,
climate change, and environmental degradation (Becker-Reshef et al.,
2010; Jayne and Rashid, 2010; and Scherr and Sthapit, 2009). Remote
sensing provides a way to monitor agriculture at a global scale, with
reasonable time and manpower requirements while also providing a
uniform system of measurement. Due to the dynamic and complex
nature of agricultural landscapes, with hundreds of crop types growing
on fields ranging from tenths to hundreds of hectares planted in nu-
merous climatic conditions, remotely sensed measurements of agri-
cultural land area vary drastically across the globe in their precision,
accuracy, and timeliness, with global operationalization still proving
elusive (Waldner et al., 2015). Most global land cover datasets include
agricultural lands as part of mosaic or mixed classes, variably including
pasture, which makes them challenging to use for agricultural appli-
cations (Bartholomé and Belward, 2005; Bontemps et al., 2011; Friedl

et al., 2010). The few with dedicated agriculture classes struggle with
accuracy (Gong et al., 2013) or otherwise highlight the uncertainty and
challenges in estimating global cropland extent (Biradar et al., 2009;
Pittman et al., 2010; Ramankutty et al., 2008; Yu et al., 2013). These
discrepancies stem from a number of issues including the availability of
cloud-free images at the desired spatial and temporal resolution of all
the necessary regions of the globe, and the availability of detailed
ground truth data for training classification algorithms (Matton et al.,
2015 and Whitcraft et al., 2015).

As an active remote sensing system, synthetic aperture radar (SAR)
can help mitigate some of the challenges of optical imagery, as the data
are mostly independent of solar and atmospheric conditions, allowing
for reliable data collection in areas of frequent cloud cover. Increasing
numbers of SAR-based agricultural land cover classifications have been
made using SAR as a standalone source, as well as in combination with
optical data. Most of these works have focused on differentiating in-
dividual crops; however they primarily have been non-operational
projects focused on small regions (Champagne et al., 2014; Haldar
et al., 2012; Skriver et al., 2011). Operational projects primarily consist
of Agriculture and Agri-Food Canada’s annual end-of-season crop map
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(Fisette et al., 2014) and a few rice monitoring projects in Asia
(Chakraborty et al., 2006 and Nelson et al., 2014). Crop/non-crop
classifications using SAR are not operationalized, and have primarily
been related to monitoring agricultural land abandonment, but again
over relatively limited regions and crops (Stefanski et al., 2014, and
Yusoff et al., 2017).

Past work has found that L- and C-band are the most effective wa-
velengths for agricultural applications due to their sensitivity to both
fine-scale structural characteristics of different crop types and growth
stages, as well as to soil moisture and other soil characteristics
(Ferrazzoli et al., 1997 and McNairn and Shang, 2016). Multi-temporal
datasets have been found to be more effective at agricultural land cover
classification due to their ability to capture agricultural phenology and
related growth patterns (Blaes et al., 2005; Deschamps et al., 2012; Jiao
et al., 2014). In order to capitalize on the changing radar signature over
time exhibited by agricultural areas, as opposed to the relatively static
signature of a forest or urban area, we introduce a statistical mea-
surement known as the coefficient of variation (CV) to measure the
variation in backscatter response over time for a single location. More
commonly used to measure spatial variation, here the CV is used to
measure temporal variation. It focuses on the overall variability and
generally dynamic nature of crop planting, growing, and harvesting
cycles, not specific phenological features of individual species. The
significant changes in ground cover, physical structure, and backscatter
of an agricultural area is expected to produce a wider range of back-
scatter values over time, and thus a higher CV (Cihlar et al., 1992).
Once the CV has been computed for an entire region, a threshold can be
used to classify pixels as a crop or non-crop, with crops having the
higher range of CV values. Crop/non-crop classifications are valuable
not only as a predecessor to classifications differentiating between in-
dividual crops, but also for what they can tell about land use patterns,
such as continued farming in a conflict zone, or spotting new agri-
cultural lands in a previously forested region. Other types of thresholds
have been previously used for SAR-based classifications, as an example,
for rice (Bouvet and Le Toan, 2011).

The methodology presented here is chosen because of its ability to
be more statistically traceable than common methods of classifying a
multi-temporal range of images, such as decision trees or the maximum
likelihood classifier. As a simple hypothesis test using a statistics-based
input layer, the CV classification allows one to estimate the effect on the
classification error if a different threshold and/or number of input
images were used. This characteristic makes this classification method
useful both when designing data collection patterns for upcoming sa-
tellite missions, and for data users trying to select the minimum number
of already collected images needed to produce a classification with a
specified target accuracy. For crop/non-crop classifications, simple al-
gorithms that do not depend on extensive training data and work in a
wide range of climactic conditions have value for providing global
measurements of agricultural area (Matton et al., 2015 and Waldner
et al., 2015). The CV algorithm fits these preferred characteristics of
being computationally simple, requiring minimal training data, and
using consistent methodology across the globe.

An important application of this work is connected to NISAR, a joint
project between NASA and the Indian Space Research Organization
(ISRO). This mission, planned for launch in 2021 will be primarily
collecting L-band HH/HV data over most land surfaces worldwide with
a 12 day repeat cycle (Rosen et al., 2015). Its consistent, freely available
(NASA, 2012) global coverage will provide a unique opportunity to
investigate applications using longer and more frequent time series
(some 30 images per year) than what has traditionally been feasible due
to data cost and coverage (Fisette et al., 2014). Further investigation of
applications techniques is encouraged by the NISAR project’s Level 1
Science Requirements, which include the requirement that the satellite
be able to seasonally classify global croplands at 80% or better at the
one hectare scale (Sanchez, 2014). This paper not only tests the po-
tential for the CV method in preparation for the NISAR satellite, it also

shows how NISAR data could be used to improve global agricultural
monitoring.

2. Data

Preliminary research has shown that cross-polarized L-band ima-
gery is more effective at separating crop and non-crop regions using the
CV classification method than C-band or co-polarized L-band observa-
tions (Siqueira, 2016). Because of these findings, cross-polarized (HV)
imagery from the Japanese L-band ALOS satellite was used for this
research, as it is one of the few available options for repeat-pass L-band
SAR data. In addition, ALOS data spans a wide range of ecosystems and
crop types, including coverage across all of the United States, and has
previously been used for agricultural land cover classification (Haldar
et al., 2012; McNairn et al., 2009 and Yusoff et al., 2017). Terrain
corrected and ground projected images are available from the Alaska
Satellite Facility (Alaska Satellite Facility Engineering Group, 2015). All
images were acquired in fine beam dual mode (FBD), ascending orbits,
with consistent viewing geometry including an off-nadir viewing angle
of 34.3° and incidence range of 36.6°–40.9° (Rosenqvist et al., 2014).
ALOS-1 had a very consistent orbit track, and hence incidence angles
did not change over time. The consistent orbit also meant that data was
repeatedly captured over the same strips of land, with significant
overlap between neighboring strips. Using imagery from ASF provided
consistent calibration and preprocessing, producing multilooked 30m
pixels with backscatter recorded in terms of gamma nought, which is a
terrain-corrected version of the normalized radar cross section (Small,
2011). ALOS operated on a 46 day repeat cycle; however coverage lo-
cations varied between cycles. Each of the test locations has between six
and fourteen images taken between 2007 and 2010 during the spring,
summer, and fall months, with analysis using all dates that provided a
complete image strip for the given location.

Ground truth information came from an agricultural land cover
classification product known as the Cropland Data Layer (CDL), which
is released annually by the United States Department of Agriculture
National Agricultural Statistics Service (USDA NASS) (Boryan et al.,
2011). The CDL was chosen as a relatively high resolution land cover
database produced for a large region under consistent methodology;
however its use did limit the possible study areas to the continental
United States. Production of the CDL combines optical data primarily
from Landsat 5 TM, Landsat 7 ETM+, and RESOURCESAT-1 AWiFS
sensors with high quality ground truth data as input for sophisticated
decision-tree classification software. The resulting product has an
overall accuracy of around 80% for all agricultural land covers, with
major crops such as corn, soybeans, wheat, cotton, and rice frequently
having accuracies over 90%. While not 100% accurate, the CDL is a
nationally available source of agriculturally-focused land cover data
that is a more consistent source of data than if separate ground truth
datasets had been used for the different regions of the country. At a
national scale, classifying individual crops, with 30m or 56m pixels
(depending on the year) it is one of the best publically available agri-
cultural land cover databases available in the world, and as such has
been used as training data for attempts at satellite-based global crop
mapping (Matton et al., 2015; Pittman et al., 2010; Waldner et al.,
2015).

Because this paper focused on a crop/non-crop classification rather
than classifying individual crop types, the full CDL information was
simplified into a multi-year crop/non-crop layer. Since the CDL is
known to have difficulty classifying fields containing multiple crops in a
single year, either due to interplanting of rows or double cropping that
alternates summer and winter crops, a crop/non-crop version should
reduce the influence of these types of errors (Boryan et al., 2011). It
should also mitigate errors related to confusion between similar crops,
such as oats or barley being misclassified as wheat. While the ALOS
imagery spans 2007–2010 growing seasons, and production of the CDL
began in the late 1990′s with a few key producing states, the CDL is
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