
Contents lists available at ScienceDirect

Int J Appl Earth Obs Geoinformation

journal homepage: www.elsevier.com/locate/jag

Assessing biomass of diverse coastal marsh ecosystems using statistical and
machine learning models

Yu Moa,⁎, Michael S. Kearneya, J.C. Alexis Ritera, Feng Zhaob, David R. Tilleya

a Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
bDepartment of Geography, University of Maryland, College Park, MD 20742, USA

A R T I C L E I N F O

Keyword:
Coastal marshes
Multispectral
Hyperspectral
Ground-based
Airborne
Spaceborne
Louisiana

A B S T R A C T

The importance and vulnerability of coastal marshes necessitate effective ways to closely monitor them. Optical
remote sensing is a powerful tool for this task, yet its application to diverse coastal marsh ecosystems consisting
of different marsh types is limited. This study samples spectral and biophysical data from freshwater, inter-
mediate, brackish, and saline marshes in Louisiana, and develops statistical and machine learning models to
assess the marshes’ biomass with combined ground, airborne, and spaceborne remote sensing data. It is found
that linear models derived from NDVI and EVI are most favorable for assessing Leaf Area Index (LAI) using
multispectral data (R2= 0.7 and 0.67, respectively), and the random forest models are most useful in retrieving
LAI and Aboveground Green Biomass (AGB) using hyperspectral data (R2= 0.91 and 0.84, respectively). It is
also found that marsh type and plant species significantly impact the linear model development (P < .05 in both
cases). Sensors with coarser spatial resolution yield lower LAI values because the fine water networks are not
detected and mixed into the vegetation pixels. The Landsat OLI-derived map shows the LAI of coastal mashes in
Louisiana mostly ranges from 0 to 5.0, and is highest for freshwater marshes and for marshes in the Atchafalaya
Bay delta. The CASI-derived maps show that LAI of saline marshes at Bay Batiste typically ranges from 0.9 to 1.5,
and the AGB is mostly less than 900 g/m2. This study provides solutions for assessing the biomass of Louisiana’s
coastal marshes using various optical remote sensing techniques, and highlights the impacts of the marshes’
species composition on the model development and the sensors’ spatial resolution on biomass mapping, thereby
providing useful tools for monitoring the biomass of coastal marshes in Louisiana and diverse coastal marsh
ecosystems elsewhere.

1. Introduction

Coastal marsh ecosystems offer valuable functions such as storm and
flood protection, fishery resources, water purification, wildlife con-
servation, and carbon sequestration; yet they are increasingly under
threat from natural and anthropogenic stresses including sea-level rise,
hurricanes, and pollution (Morris et al., 2002; Howes et al., 2010;
Deegan et al., 2012). The importance and vulnerability of coastal
marshes necessitate effective ways to closely monitor them. Optical
remote sensing is a powerful tool for this task. Its application for as-
sessing coastal marshes’ biomass dates back to the 1980s (Table 1). The
first studies were done on Spartina alterniflora in saline marshes in
Delaware (Hardisky et al., 1983, Gross et al., 1987). Later studies ex-
tended the application to species in lower salinity ranges to other
geographic areas inside or outside the United States (Gross et al., 1986,
1993; Zhang et al., 1997; Jensen et al., 1998, 2002; Kearney et al.,
2009; Trilla et al., 2013; Byrd et al., 2014; Ghosh et al., 2016). Although

existing studies have demonstrated the potential of using optical remote
sensing in monitoring coastal marshes at a landscape scale, they con-
centrated on saline marshes and focused on sites covered by single
species, mostly S. alterniflora. How optical remote sensing can be ap-
plied to diverse coastal marsh ecosystems composed of a wide range of
salinity and various plant species is less clear.

Diverse coastal marshes ecosystems, such as the ones in Louisiana,
encompass habitats spanning a wide range of salinity and plant species
with various leaf characteristics and canopy structures. Coastal marshes
in Louisiana are subdivided into freshwater, intermediate, brackish, and
saline marshes based on vegetation associations that correspond closely
with the environmental modifiers such as salinity, water level, and tidal
inundation duration (Gosselink, 1984; Visser et al., 2012). Plant species
richness decreases from freshwater to intermediate to brackish to saline
marshes, while dominance increases (Gosselink, 1984). Freshwater
marshes are characterized by tall broadleaf plants (2–4m) such as
Typha spp., while the brackish and saline marshes are dominated by
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smaller plants that are around one-meter height or less such as S. al-
terniflora (Penfound and Hathaway, 1938).

This study examines the application of optical remote sensing on
assessing biomass of the diverse coastal marsh ecosystems in Louisiana.
We sample spectral and biophysical data from all freshwater, inter-
mediate, brackish, and saline marshes, and develop statistical and
machine learning models to map the biomass of the marshes with
combined ground, airborne, and spaceborne data. The impacts of the
species composition on the model development and the sensors’ spatial
resolution on biomass mapping are also investigated.

2. Methods

2.1. Ground sampling

2.1.1. Sampling sites
Forty-three sites in east Barataria Bay, LA, were sampled on 16–22

Aug 2015 (Fig. 1A; Table 2). The sites are in freshwater, intermediate,
brackish, and saline marshes, corresponding to habitats with salinity
of< 0.5 ppt (fresh), 0.5–5 ppt (oligohaline), 5–18 ppt (mesohaline),
18–30 ppt (polyhaline), respectively. The sites were selected because
they were covered by dominant and common species in Louisiana’s
coastal marshes with wide ranges of canopy height and structure. Due
to logistical reasons, more sites were from saline marshes compared to
the other three marsh types, but the saline sites were covered by species
also commonly found in the brackish, intermediate, and freshwater
habitats, such as Acnida cuspidate, Distichlis spicata, Iva frutenscens, Vigna
luteola, and Spartina patens. The sites were sampled for spectral and
biophysical (i.e. leaf area index, LAI; aboveground biomass; and canopy
height) data. In each site, vegetation spectral and LAI data were col-
lected from four measurements, canopy height from three

measurements, and aboveground biomass from two measurements
(Fig. 1B). Average values were calculated for the multiple measure-
ments within each site.

2.1.2. Biophysical measurements
LAI of the marshes was estimated using the GreenCropTracker

software (Liu and Pattey, 2010) and downward photos taken by a
camera (Canon PowerShot ELPH 110 HS, 6.16× 4.62mm sensor and
4mm focal length) held at around 1.4m height (equals to ground area
about 1.5× 2m2). This method derives LAI from the gap fraction of
top-of-canopy digital color photography, which is strongly correlated
(R2= 0.83) to actual LAI estimates. Briefly, this method assumes that
the foliage is azimuthally uniform and spatially randomly distributed,
and thus the relationship between canopy gap fraction and LAI follows
the Poisson distribution. The canopy vertical gap fraction, hence, can be
directly measured by quantifying the proportion of background pixels
(including non-green leaf materials) of downward photos. Although this
method is developed from upland crop ecosystems, it is also applicable
to coastal marshes as its assumptions and calculations are not sensitive
to water in the background substrates (Zhao et al., 2012).

Aboveground biomass was collected from circular plots of 0.5 m2

(Site 1–16, 21, 22, and 25–43) or 0.26m2 (Site 17–20, 23, and 24). The
different sizes of the plots are due to logistics reasons, but they did not
impact the results because the biomass is calculated for per unit area.
All aboveground biomass within the plots was gathered, put into la-
beled plastic bags, and then transported to the laboratory for further
processing. Green (live) and brown (senescent or dead) biomass were
separated. A representative subsample (around 30% by wet weight) of
each sample was dried at 80 °C for 24–36 h until constant weight,
weighed, and used to calculate the weight of the original sample.
Aboveground green biomass (AGB), aboveground brown biomass, and

Table 1
Summary of literature using optical remote sensing to estimate coastal marsh biophysical parameters. Acronyms for (1) vegetation indices: normalized difference vegetation index, NDVI;
infrared index, II; sample ratio, SR; soil adjusted vegetation index, SAVI; Global Environmental Monitoring Index, GEMI; atmospherically resistant vegetation index, ARVI; Soil and
Atmospherically Resistant Vegetation Index, SARVI; modified chlorophyll absorption in reflectance index, MCARI; modified soil adjusted vegetation index, MSAVI; optimized soil-
adjusted vegetation index, OSAVI; atmospheric and soil vegetation index, ASVI; green vegetation index, VIGreen; enhanced vegetation index, EVI; wide dynamic range vegetation index,
WDRVI; chlorophyll index red, CIred; chlorophyll index green, CIgreen; infrared summation index, ISI; green normalized difference vegetation index, GNDVI; visible atmospherically
resistant index, VARI; (2) biophysical variables: total aboveground biomass, TAB; live leaf biomass, LLB; live aboveground biomass LAB; total fresh mass, TFM; green fresh mass, GFM;
aboveground green biomass, AGB; leaf area index, LAI; percent canopy cover, PCC; aboveground dead biomass, ADB; vegetation fraction, VF; leaf chlorophyll content, CHLl; and other (3)
Partial least squares regression (PLS).

Methods Biophysical
Parameters

Best R2 Location Species Reference

Landsat TM derived NDVI, II TAB, LLB 0.9 Lewes, DE, US Spartina alterniflora Hardisky et al. (1983)
Landsat TM derived NDVI, II TAB, LLB, LAB 0.89 Brittany, France Spartina anglica Gross et al. (1986)
Landsat TM derived NDVI LAB, 0.7 Lewes, DE, US Spartina alterniflora Gross et al. (1987)
Landsat TM derived NDVI LAB 0.89 Lewes, DE, US Typha angustifolia Gross et al. (1993)
Landsat TM derived SR, NDVI, SAVI, GEMI, ARVI,

SARVI
TAB, TFM, GFM,
AGB

0.72 San Pablo Bay, CA, US Saline marshes Zhang et al. (1997)

Airborne multispectral SR, NDVI, ISI, IRVIS, SAVI,
ARVI, SARVI

TAB, LAI 0.77 Murrells Inlet, SC, US Spartina alterniflora Jensen et al. (1998)

Airborne multispectral SR, NDVI, SAVI TAB, LAI 0.67 National Estuarine Research
Reserve, SC, US

Spartina alterniflora Jensen et al. (2002)

Landsat TM derived NDVI LAI 0.96 Chesapeake Bay, MD, US Brackish marshes Kearney et al. (2009)
Narrowband MCARI, MSAVI, SR, OSAVI, NDVI TAB, LAI 0.84 Bahia Blanca Estuary,

Argentina
Spartina alterniflora Trilla et al. (2013)

MODIS and Landsat derived broadband NDVI PCC 0.82
PLS using simulated Hyperion, Landsat 7, and World

View-2
AGB 0.46 Sacramento–San Joaquin

Delta, CA, US
Dominated by Typha spp. Byrd et al. (2014)

PLS using image from Hyperion, Landsat 7, and World
View-2

AGB 0.45

Airborne broadband NDVI, SAVI, MSAVI, ARVI, ASVI,
VIGreen with LiDAR

LAB, ADB, TAB 0.47 Galveston Island, TX, US Spartina alterniflora Kulawardhana et al.
(2014)

MODIS derived broadband NDVI, EVI, WDRVI, CIred,
CIgreen, SAVI, GNDVI, and VARI

LAI, VF, CHLl,
AGB

0.68 Northern Gulf of Mexico, US Saline marshes Ghosh et al. (2016)

Landsat MSS, TM, ETM+, and OLI, ASTER, AVHRR,
MODIS, SPOT, and SENTINEL-2 MSI derived SR,
NDVI, ARVI, SAVI, SARVI, and EVI

LAI 0.7 LA, US Freshwater, intermediate,
brackish, and saline marshes

This study

Narrowband SR, NDVI, ARVI, SAVI, SARVI, and EVI LAI, AGB 0.93, 0.71
Airborne spectroscopy with random forest model LAI, AGB 0.91, 0.84
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