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ARTICLE INFO ABSTRACT

Keywords: Background: Non-optimal ambient temperature has detrimental impacts on mortality worldwide, but little is
Heat known about the difference in population vulnerability to non-optimal temperature and temperature-related
Cold morbidity burden between developing and developed countries.

China, Australia

. Objectives: We estimated and compared the associations of emergency department visits (EDV) with non-optimal
Emergency department visits

temperature in terms of risk trigger temperature, the average slope of exposure-risk function and attributable
risk in 12 cities from China and Australia.

Methods: We modelled the associations of EDV with heat during warm season and with cold during cold season,
separately, using generalized additive model. Population vulnerability within a given region was quantified with
multiple risk trigger points including minimum risk temperature, increasing risk temperature and excessive risk
temperature, and average coefficient of exposure-risk function. Fraction of EDV attributable to heat and cold was
also calculated.

Results: We found large between- and within-country contrasts in the identified multiple risk trigger tempera-
tures, with higher heat and cold trigger points, except excessive risk temperature, observed in Australia than in
China. Heat was associated with a relative risk (RR) of 1.009 [95% confidence interval (CI):1.007, 1.011] in
China, which accounted for 5.9% of EDV. Higher RR of heat was observed in Australia (1.014, 95% CI: 1.010,
1.018), responsible for 4.0% of EDV. For cold effects, the RR was similar between two countries, but the at-
tributable fraction was higher in China (9.6%) than in Australia (1.5%).

Conclusions: Exposure to heat and cold had adverse but divergent impacts on EDV in China and Australia.
Further mitigation policy efforts incorporating region-specific population vulnerability to temperature impacts
are necessary in both countries.

1. Introduction

Non-optimal outdoor temperature is a well-documented hazard to
human health across the globe (Gasparrini et al., 2015; Huang et al.,
2011; Ye et al., 2012). Exposure to either heat or cold has been asso-
ciated with increases in a wide range of cause-specific deaths and ill-
nesses (Seltenrich, 2015; Petitti et al., 2016), but only until recently has
the disease burden caused by non-optimal temperature been quantified
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(Gasparrini et al., 2015; Carmona et al., 2016; Yang et al., 2016). Ac-
cumulating evidence suggests that a large proportion of deaths can be
attributable to non-optimal temperature in many countries (Gasparrini
etal., 2015; Yang et al., 2016). However, data on morbidity attributable
to non-optimal temperature are limited so far (Cheng et al., 2016; Tian
et al., 2016).

It is also evident that temperature disproportionally affects popu-
lations within and between countries (Gasparrini et al., 2015; Carmona
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et al., 2016; Nordio et al., 2015), but the root causes for geographically
distinct temperature impacts, especially the population vulnerability
indicators such as temperature thresholds under different weather
conditions and average slope of exposure-risk function, have been
rarely investigated (Petitti et al., 2016). Many factors such as popula-
tion density, green space coverage and socioeconomic status may play
an important role in altering the population vulnerability within a re-
gion (Dang et al., 2017; Hondula and Barnett, 2014; Hondula et al.,
2012), and ultimately, the overall impacts of these factors, either pro-
tective or negative, can be monitored through detecting the “turning
point” (also referred to as temperature threshold or minimum mortality
temperature) in temperature-health relationship (Gasparrini et al.,
2015; Astrém et al., 2016). However, the inconsistent methodologies
employed to detect temperature threshold make it difficult to measure
and compare population vulnerability and temperature-induced disease
burden across regions (Petitti et al., 2016). To improve human resi-
lience and the effectiveness of public health response mechanisms
about when to issue weather warnings and to guide proper public
health interventions, in addition to identifying a single temperature
threshold, as in most previous studies, the investigation of other risk
trigger temperatures that reflect the different severities of temperature
effects is also crucial (Petitti et al., 2016). An increasing number of
studies have looked into temperature and health outcomes, but most of
them have focused on mortality. Additionally, few studies have speci-
fically examined the difference in temperature impacts between de-
veloping and developed regions. Therefore, quantifying and comparing
morbidity events attributable to non-optimal temperature in different
settings are strongly warranted.

This paper estimated and compared the heat- and cold-related po-
pulation vulnerability and attributable burden, using emergency de-
partment visits (EDV) data from multiple cities in China and Australia.
It also attempted to identify multiple risk trigger temperatures, estimate
the average slope of exposure-risk function, and quantify the emergency
department events associated with non-optimal temperature.

2. Methods
2.1. Data collection

This study included six cities (Beijing, Shanghai, Guangzhou, Hefei,
Jinan, Hangzhou) from China and six cities (Brisbane, Cairns, Mackay,
Mount Isa, Rockhampton, Townsville) from Queensland, Australia
(Supplementary Fig. S1). These cities were selected because they are
located in northern and southern hemispheres, and developing and
developed countries, with diverse characteristics such as climate and
socioeconomic development. We obtained daily time series data on
EDV and weather variables for each city in different periods between
2010 and 2015. The details of these data were partly described in
previous studies (Chen et al., 2017; Xu et al., 2017), with additionally
longer time series in China and more cities in Australia analysed for this
study. Description of the data is shown in the appendix (see
Supplemental Material, p.2). Considering the broad influence of tem-
perature on disease spectrum (Seltenrich, 2015; Petitti et al., 2016), we
used all-cause EDV for analysis to reflect the strength of overall tem-
perature impacts. Mean daily temperature was chosen as the exposure
index (Guo et al., 2014; Gasparrini et al., 2015).

2.2. Statistical analysis

2.2.1. Stage-I: exposure-response relationships with cold and heat

Within each city we estimated the association between EDV and
temperature using generalized additive model (GAM). To minimize the
confounding effects of season-related factors on the strength of asso-
ciation, we restricted the analysis of cold to the cold season, and ana-
lysis of heat to warm season (Petitti et al., 2016). Heat or cold stress
that occurs in other period was believed to be sporadic, within the
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category of short-term temperature variability such as sudden tem-
perature changes or deviations within several days (Cheng et al., 2017
Guo et al.,, 2016). As China and Australia are located in different
hemispheres, the definitions of warm and cold seasons are exactly op-
posite. May to September was considered the warm season in China and
the cold season in Australia, and November to March the cold season in
China and the warm season in Australia (Ma et al., 2015; Li et al., 2017;
Tong et al., 2015; Guo, 2017; Cheng et al., 2016; William et al., 2013;
Barnett et al., 2005).

Separate quasi-Poisson GAM was used to examine relationships of
EDV with heat during warm season, and with cold during cold season.
Since there is convincing evidence that heat effects on acute health
events occur immediately and persist within 24 h (Bhaskaran et al.,
2012; Guo, 2017), and modelling the association of EDV with the
current day's temperature produced the best model fit in all cities as
judged by the lowest value of generalized cross-validation (GCV) score,
the heat-EDV relationship was examined for the current day (lag 0). But
the association with cold was examined over the lag of 27 days (lag
0-27) considering the delayed and long-lasting cold effects (Zhao et al.,
2017). The used GAM took the form:

log(EDV) = a + s(Tem, k = 4) + s(DTR, k = 4) + year + month

+ ns(day) + dow (@D)]

where EDV is the observed daily counts of emergency department
visits;  « is the intercept; s() is the fitted thin-plate regression spline
with k-1 degrees of freedom for the temperature (cold or heat) (Petitti
et al., 2016), as well as for an independent risk factor - diurnal tem-
perature range, which was calculated as the difference between the
maximum and minimum temperature within a day (Cheng et al., 2014).
Other confounding factors were also controlled for, including between-
year variation with "year" as the factor term, between- and within-
month variations with "month" as the factor term and natural cubic
spline (ns) for the "day" of each month, and day of week with "dow" as
the categorical variable.

This model parameter setting was in line with many previous stu-
dies (Petitti et al., 2016; Tong et al., 2015), and model fit was also
validated by the lowest generalized cross-validation (GCV) value, and
approximately normal and random distribution of model residuals over
time for most regions included.

We slightly modified the methods proposed by Curriero et al.
(2002), Gasparrini et al. (2015), and Petitti et al. (2016), and identified
three different risk trigger temperatures at which weather-health
warning system and intervention measures may be activated or trig-
gered (Box 1). Briefly, minimum risk temperature (MRT), increasing
risk temperature (IRT), and excess risk temperature (ERT), respectively
reflecting various risk levels under different weather conditions, were
defined and detected based on the fitted exposure-response curves
(Petitti et al., 2016). It is worth noting that the risk within temperature
range towards the extremes of heat and cold was not considered at this
stage, because in reality under extreme weather conditions some re-
gions might have already taken protective measures or there were re-
latively fewer health events, causing non-significant or decreased risk.
Therefore, the exposure-risk association estimation and identification of
different risk trigger points had the potential of important implications
for practice prevention against adverse weather conditions (Petitti
et al., 2016).

2.2.2. Stage-II: average slope of temperature-risk association

To quantify and compare the risk of heat or cold across the whole
temperature distribution under study, the slope of exposure-response
curve above or below MRT was estimated, instead of previously com-
monly used approach investigating the temperature effects at single or
several cut-offs of temperature distribution such as 99th vs 90th for
heat or 10th vs 25th for cold (Ban et al., 2017; Chen et al., 2013). In
present study piece-wise linear quasi-Poisson regression model was
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