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A B S T R A C T

Ground-level ozone (O3) is a powerful oxidizing agent and a harmful pollutant affecting human health, forests
and crops. Estimating O3 exposure is a challenge because it exhibits complex spatiotemporal patterns. The aim in
this study was to provide high-resolution maps (100× 100m) of O3 for the metropolitan area of Montreal,
Canada. We assessed the kriging with external drift (KED) model to estimate O3 concentration by synoptic
weather classes for 2010. We compared these results with ordinary kriging (OK), and a simple average of 12
monitoring stations. We also compared the estimates obtained for the 2010 summer with those from a Bayesian
maximum entropy (BME) model reported in the literature (Adam-Poupart et al., 2014). The KED model with
road and vegetation density as covariates showed good performance for all six synoptic classes (daily R2 esti-
mates ranging from 0.77 to 0.92 and RMSE from 2.79 to 3.37 ppb). For the summer of 2010, the model using
KED demonstrated the best results (R2 =0.92; RMSE=3.14 ppb), followed by the OK model (R2 = 0.85,
RMSE=4 ppb). Our results showed that errors appear to be substantially reduced with the KED model. This may
increase our capacity of linking O3 levels to health problems by means of improved assessments of ambient
exposures. However, future work integrating the temporal dependency in the data is needed to not overstate the
performance of the KED model.

1. Introduction

Spatial variation of ground-level ozone (O3) is strongly influenced
by environmental factors, including meteorological conditions, land
use, spatial distribution of the population, and the long-range transport
(Moral et al., 2012; So and Wang 2003; Verstraeten et al., 2015). For
example, high O3 levels usually occur during the summer months when
heat and sunlight are more intense. However, high levels of O3 can also
be observed at mid-latitude sites in the late winter and spring seasons
(Ahmadov et al., 2015; Schnell et al., 2009). During the winter, high
concentrations of O3 can be caused by long-range transport (i.e.,
transport of air pollutants in the atmosphere for a distance greater than
100 km) and buildup of O3 precursors (Diem, 2004). During the spring,
high concentrations of O3 can be caused by a strong generation of

isoprene and terpenes from vegetation (Liudchik et al., 2013) and
modulated by enhanced O3 photochemistry with UV radiation. High O3

concentrations also occur in non-industrial areas (even several hundred
kilometers downwind from urban and industrial areas) and can be
found in areas with low population density (Canada-United States Air
Quality Committee, 1999). In urban areas, both anthropogenic and
natural NOx and VOC are important precursors of O3 formation, unlike
in non-urban areas, where the biogenic VOC emitted from vegetation is
the most important precursor of O3 formation (U.S. EPA, 2013). The
intra-urban variations of O3 levels are also associated with the geo-
graphic variation of sources of O3 precursors and sources of oxidizing
compounds such as road traffic-related NOx (Liu and Rossini, 1996).

The assessment of O3 exposure is a challenge because it exhibits
complex spatiotemporal patterns (Adam-Poupart et al., 2014). Studies
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have suggested that these patterns may be explained by the inter-
relationship between the environmental factors and the source of
emissions. For example, high levels of O3 in Eastern Canada have been
associated with clear sky anticyclonic conditions when high tempera-
tures and west to south-west winds predominate. This facilitates the
long-range transport of O3 and its precursors (McKendry, 1993) from
heavily industrial regions located along the shorelines of the Great
Lakes (Canada-U.S. border) where higher levels of O3 occur (Garcia
et al., 2010) and favors photochemical oxidation rates.

To improve the exposure assessment of populations, different
geostatistical techniques have been used in air pollution studies.
Ordinary kriging (one version of kriging) and land-use regression (LUR)
are the most common geostatistical approach used in air quality mod-
eling (Jerrett et al., 2005). More complex spatiotemporal models such
as Bayesian maximum entropy (BME) have also been used to estimate
exposure over large areas (Adam-Poupart et al., 2014). These geosta-
tistical models have specific differences and each one has inherent
uncertainties due to the complexity of the atmospheric environment.
For example, while kriging and BME are based on interpolation tech-
niques to predict pollutant concentrations at unmonitored sites (Deli-
giorgi and Philippopoulos, 2011), LUR is based on regression models,
where the spatial distribution of independent variables is used to esti-
mate the values at unmonitored areas (Rivera et al., 2012; Ryan and
LeMasters, 2007).

These studies have demonstrated that identifying the underlying
geographic phenomena (e.g., spatiotemporal patterns) is useful to
monitor conditions on the ground, to calculate spatiotemporal changes,
to compare populations, and, especially, to communicate actionable
data to potentially affected people as well as governmental agencies
and policymakers (Adams and Kanaroglou, 2016; Bateman et al., 2013;
Kurland and Gorr, 2012; Mitchell, 1999).

In this study, we assessed a multivariable kriging approach known
as Kriging with external drift (KED) to predict daily O3 concentrations
at the local scale (100m grid) in the metropolitan area of Montreal,
Canada. These results were compared with those of Ordinary kriging
(OK) and with an approach based on the simple mean of O3 levels at
fixed-site monitoring stations. We also compared summer estimates to
those obtained from a BME model reported in the literature (Adam-
Poupart et al., 2014).

2. Methods

2.1. Study area

The study was carried out in Montreal, Canada, which is located
between the parallels of 45.27–45.72° N and 73.98–73.28° W. The area
is composed of the following nine census consolidated subdivisions
(CCS), representing the Montreal census metropolitan area (CMA):
Montreal, Laval, Longueuil, Brossard, La Prairie, Saint-Philippe, Saint-
Mathieu, Saint-Constant, and Kahnawake. Montreal has an area of
1309.5 km2 and a population of 2.48 million people. The Montreal CCS
includes the City of Montreal, which is the second largest city in
Canada, and is located in the Saint Lawrence Valley at the eastern end
of the Windsor-Quebec corridor (located along the north shore of the
Great Lakes and Saint Lawrence River), the most industrialized region
of Canada (McKendry, 1993) (Fig. 1).

In this study, the climate is categorized as humid continental, with
severe winters and with hot and humid summers. It is subject to large
continental climate variations. The wind direction is predominantly
from the south-west, alternating with northeasterlies along the axis of
the Saint Lawrence Valley.

2.2. Study design

This study was conducted over a period of one year, from January to
December 2010. The OK, the KED model and the mean estimates were

implemented for each of six synoptic weather classes to account for
spatial dependencies on meteorological variables and to deal with
temporal dependence. The OK and KED models were selected because a
preliminary spatial analysis of data indicated that there exists a spatial
autocorrelation. So we used interpolation approaches (univariable and
multivariable) to consider spatial dependences. In order to compare the
results of these models with those of a BME model (developed for the
summer season), we also produced estimates for the months of May
through September 2010. Table 1 shows the differences among the
models used in our study in terms of the spatiotemporal aspects.

2.3. O3 data

Hourly data of O3 concentrations were obtained from the National
Air Pollution Surveillance (NAPS) network of Environment Canada
(Environment Canada, 2013d). O3 data was measured by 12 NAPS
monitors in the study area (Fig. 1), providing a spatially sparse sample
(i.e., about 1 station per 100 km2) of O3 data with a good temporal
coverage. These measurements are performed using gas analyzers op-
erating on ultraviolet light absorption principles (Environment Canada,
2013a).

We modeled O3 concentrations throughout the year considering two
periods category: (i) summer – May through September; and ii) winter,
spring and fall – January through April, and October through
December. The synoptic class 2 corresponding to the winter season had
11 days that exceeded the criteria of 38 ppb for 8-h average and for the
synoptic class 5 corresponding to the spring season had 42 days that
exceeded the criteria (in Section 2.5, we present the details of how
synoptic classes were defined). We used midday 8-hr averages because
the largest values of the 24-h O3 concentrations period for a given day
are normally in this interval and because it corresponds to the Canada-
wide standard for O3 estimation (Conseil Canadien des Ministres de
l′Environnement, 2000). O3 concentration was calculated for the 12
monitors having no more than two hours of missing values on any given
day. For this reason, we calculated midday 8-hr averages
(09:00–17:00 h) of O3 levels for 2010.

2.4. Meteorological data

Meteorological measurements were obtained from the National
Climatic Data and Information Archive (DAI) of Environment Canada
(Environment Canada, 2013b). There were 8 meteorological mon-
itoring stations across the Montreal CMA for the calendar years from
January 2008 to December 2010 (Fig. 1). To create spatiotemporal
meteorological surfaces (for KED, see below), we calculated midday 8-
hr averages for temperature and relative humidity (except for KED,
which we describe further in Section 2.7). The same interval as for the
O3 measurements was used because these meteorological variables in-
fluence O3 chemistry and concentration. Also, we used daily average
precipitation since only daily total information was available. Pre-
cipitations are responsible for the reduction of O3 concentrations by wet
removal of soluble O3 precursors (Hou et al., 2015). We considered
daily average wind speed as representative for long-range transport
associated with the distance traveled by the air mass within the 24-h
period (Camalier et al., 2007). Hourly measures of the wind speed and
directions were also used to create wind roses. Each wind rose shows
the frequency and speed of wind blowing from each direction (hourly
measures) in a particular distribution (i.e., a synoptic group) for 2010.

Same as we considered for O3 concentration, meteorological data
were calculated for all available monitoring data presenting no more
than two hours of missing values on any given day.

2.5. Synoptic weather analysis

Weather patterns evolve in time (Hufty, 1982) influencing the fre-
quency and intensity of air pollutant concentrations including O3 (Ebi
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