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A B S T R A C T

Assessing historical exposure to air pollution in epidemiological studies is often problematic because of limited
spatial and temporal measurement coverage. Several methods for modelling historical exposures have been
described, including land-use regression (LUR). Satellite-based LUR is a recent technique that seeks to improve
predictive ability and spatial coverage of traditional LUR models by using satellite observations of pollutants as
inputs to LUR. Few studies have explored its validity for assessing historical exposures, reflecting the absence of
historical observations from popular satellite platforms like Aura (launched mid-2004). We investigated whether
contemporary satellite-based LUR models for Australia, developed longitudinally for 2006–2011, could capture
nitrogen dioxide (NO2) concentrations during 1990–2005 at 89 sites around the country. We assessed three
methods to back-extrapolate year-2006 NO2 predictions: (1) ‘do nothing’ (i.e., use the year-2006 estimates di-
rectly, for prior years); (2) change the independent variable ‘year’ in our LUR models to match the years of
interest (i.e., assume a linear trend prior to year-2006, following national average patterns in 2006–2011), and;
(3) adjust year-2006 predictions using selected historical measurements. We evaluated prediction error and bias,
and the correlation and absolute agreement of measurements and predictions using R2 and mean-square error R2

(MSE-R2), respectively. We found that changing the year variable led to best performance; predictions captured
between 41% (1991; MSE-R2 = 31%) and 80% (2003; MSE-R2 = 78%) of spatial variability in NO2 in a given
year, and 76% (MSE-R2 = 72%) averaged over 1990–2005. We conclude that simple methods for back-extra-
polating prior to year-2006 yield valid historical NO2 estimates for Australia during 1990–2005. These results
suggest that for the time scales considered here, satellite-based LUR has a potential role to play in long-term
exposure assessment, even in the absence of historical predictor data.

1. Introduction

Exposure assessment in studies of long-term health effects of air
pollution is often hampered by sparse or missing measurements (Hart
et al., 2009; Hystad et al., 2012). This challenge is most pronounced in
studies of multi-decadal exposures, which is one reason why there are
fewer studies focused on them compared with the relatively large body
of evidence on shorter-term exposures (Hansell et al., 2016). One op-
tion for addressing these limitations is land-use regression (LUR) and

other air pollution modelling techniques. LUR is a frequently used
method for assigning exposures in epidemiological studies. It uses en-
vironmental predictors (such as nearby road length, traffic volume and
land use categories) to capture variability in measured pollutant con-
centrations, and can then be applied to estimate concentrations at un-
measured locations (Hoek et al., 2008; Marhsall et al., 2008).

Traditionally, most LUR models were developed for specific cities
and their applicability to other locations was limited, which con-
strained their use in national- or multi-national health studies (Allen
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et al., 2011; Briggs, 2007; Poplawski et al., 2009). Recently, several
studies have incorporated satellite-derived observations of pollutants
and other predictors of ground-level pollutants (e.g., impervious sur-
faces and tree cover). These satellite-based LUR models can potentially
serve the dual purpose of improving predictive ability and extending
spatial coverage compared with traditional LUR (Jerrett et al., 2017),
which has led to national-and multi-national models for nitrogen di-
oxide (NO2), PM2.5 (< 2.5 µm) and PM10 (< 10 µm) (Bechle et al.,
2015; Beckerman et al., 2013; de Hoogh et al., 2016; Hoek et al., 2015;
Hystad et al., 2011; Knibbs et al., 2014; Novotny et al., 2011; Vinneau
et al., 2013; Young et al., 2016). Notably, the technique has recently
been used to develop a global model for NO2 that captured 54% of
spatial variation in 2011 mean concentrations (Larkin et al., 2017).

Previous studies have demonstrated a role for LUR in historical NO2

exposure assessment, either through development of models using
historical predictor data (i.e., to match or approximate the year(s) of
interest) or, when this is not feasible, via back-extrapolation of esti-
mates from more recent models (e.g., Beelen et al., 2007; Cesaroni
et al., 2012; Chen et al., 2010; Eeftens et al., 2011; Gulliver et al., 2013;
Gulliver et al., 2016; Levy et al., 2015; Wang et al., 2013). However,
despite the potential benefits of satellite-based LUR models their va-
lidity for historical exposure assessment has received limited attention
(Hystad et al., 2012). This aspect of satellite-based LUR remains largely
unexplored, perhaps reflecting the absence of historical, high spatial
resolution satellite data. For example, the ozone monitoring instrument
(OMI) aboard the Aura satellite is a popular source of NO2 observations
and was launched in mid-2004.

In this study, we sought to evaluate the ability of national satellite-
based LUR models for Australia to capture historical levels of NO2 using
multiple back-extrapolation methods. We aimed to add to the limited
literature on historical estimation of NO2; most studies have been
performed in North America and Western Europe using relatively dense
monitoring networks, and only one study used satellite data (Hystad
et al., 2012). Australia provides a useful contrast to these other loca-
tions because of its continental scale, highly urbanised and con-
centrated population, and relatively scant temporal and spatial cov-
erage from the ground-based NO2 monitoring network.

2. Methods

2.1. Overview of satellite-based LUR models

We previously developed satellite-based LUR models for annual
mean NO2 using generalised estimating equations (GEEs) fit to data
from the 68 continuous regulatory chemiluminescence monitors oper-
ating throughout Australia during 2006–2011 (population = 24.5
million; area = 7.7 million km2; ~0.3 NO2 monitors/100,000 persons;
~0.9 monitors/100,000 km2). The models were used to predict annual
NO2 for each year during that period; their development and validation
are described in detail elsewhere (Knibbs et al., 2014, 2016). Briefly, we
developed two models: one included the tropospheric column abun-
dance of NO2 molecules observed by the OMI spectrometer aboard the
Aura satellite as a predictor (molecules per cm2; ‘column model’). The
other model included the estimated ground-level NO2 concentration
(ppb; ‘surface model’), based on also including a surface-to-column
ratio from the Weather Research and Forecasting model coupled with
Chemistry (WRF-Chem). We used five-fold cross-validation with five
replications and found that our column and surface models, respec-
tively, explained 81% (RMSE = 1.4 ppb) and 79% (RMSE = 1.4 ppb) of
spatial variability in annual mean NO2 across Australia during
2006–2011 (Knibbs et al., 2014).

We subsequently evaluated model performance using an in-
dependent data set of passive samplers deployed during 2006–2014. We
found the column and surface models, respectively, captured 66%
(RMSE = 2.0 ppb) and 69% (RMSE = 2.0 ppb) of spatial variability in
annual NO2 at 98 non-roadside sites (Knibbs et al., 2016). The present

study builds on those analyses by exploring the models’ ability to
capture historical levels of annual NO2, and determine their validity for
assigning multi-decadal exposures in cohort studies of health effects.

2.2. Measurement data for historical validation

We contacted the eight agencies responsible for regulatory air
quality monitoring across Australia's six states and two territories. We
obtained daily NO2 concentrations (ppb) from all monitoring sites
during 1990–2005, provided: (a) measurements were performed for at
least one calendar year; (b) a calibrated chemiluminescence monitor
compliant with Australian Standard 3580.5.1–1993 was used (SAI
Global, 2017); (c) data were subject to quality assurance (QA) proce-
dures, and; (d) coordinates for the site location were known to at least
five decimal places. Although NO2 had been measured in some Aus-
tralian capital cities as early as the 1960s, most cities had either no
monitoring or only a single site throughout the 1970s and 1980s, and
measurement techniques and frequency were inconsistent (Cleary,
1969; National Environment Protection Council, 2000). We therefore
selected 1990 as our earliest year because Australia's NO2 monitoring
network underwent substantial expansion in the early-to-mid 1990s
prior to the introduction of the first national air quality standards in
1998 (National Environment Protection Council, 1998). For the present
study, we used 2005 as our last year because the models were devel-
oped using data from 2006 to 2011, and previously validated for
2006–2014 (Knibbs et al., 2014, 2016). That time frame allowed us to
assess our models’ historical performance over the 16-year period
(1990–2005) prior to the 6-year period they were developed for.

We obtained data from 90 monitoring sites. To our knowledge, they
represent all regulatory monitors that met our inclusion criteria. The
sites spanned six of Australia's eight states and territories; no historical
data were available for Tasmania or the Northern Territory, which are
the smallest state and territory by population, respectively. Many of the
sites had been used to develop our LUR models for 2006–2011 (Knibbs
et al., 2014). Because of the sparse Australian monitoring network, we
did not exclude these sites but instead undertook sensitivity analyses to
assess the influence of model development sites and non-development
sites on our validation results, which are described in Section 2.6.

Seven monitoring sites, all in major cities, had been relocated be-
tween 0.2 and 2.2 km from their original location during the study
period, of which one site had been relocated twice (0.5 and 1.0 km,
respectively). Because NO2 can be spatially heterogeneous over such
distances in urban areas, we treated the pre- and post-relocation mea-
surements as being from different sites (Gilbert et al., 2003; Marshall
et al., 2008; Pleijel et al., 2004; Roorda-Knape et al., 1999). This
yielded 98 sites available for further analyses.

2.3. Processing of measurements

We sought to maximise inclusiveness while minimising the potential
for seasonal bias due to missing data. We therefore included sites with
50% or greater non-missing daily NO2 observations in a given year,
provided there was at least one month of valid data per season (Hystad
et al., 2011). As we were interested in assessing our LUR models’ ability
to capture long-term average concentrations, we also recorded sites that
had 50% or greater non-missing data during 1990 through 2005, pro-
vided: (a) at least two years of valid data were collected in the first
(1990–1997) and second (1998–2005) eight years of our sixteen-year
study period, respectively, and; (b) of these, at least one month of data
was collected per season per year. We used this approach as a balance
between seeking to include a sufficiently large number of sites, but
without compromising the ability to capture changes in NO2 over the
study period. We undertook sensitivity analyses to assess the stability of
long-term NO2 trends and the effects of using more stringent site in-
clusion criteria on our results (i.e., requiring 60%, 70%, or 80% of data
to be non-missing).
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