
Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

Temporal trends in air pollution exposure inequality in Massachusetts

Anna Rosofskya,⁎, Jonathan I. Levya, Antonella Zanobettib, Patricia Janulewicza,
M. Patricia Fabiana

a Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
b Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA

A R T I C L E I N F O

Keywords:
Air pollution
Environmental inequality
Environmental justice
Longitudinal analysis
Inequality index

A B S T R A C T

Mounting evidence over the past several decades has demonstrated inequitable distribution of pollutants of
ambient origin between sociodemographic groups in the United States. Most environmental inequality studies to
date are cross-sectional and used proximity-based methods rather than modeled air pollution concentrations,
limiting the ability to examine trends over time or the factors that drive exposure inequalities. In this paper, we
use 1 km2 modeled PM2.5 and NO2 concentrations in Massachusetts over an 8-year period and Census demo-
graphic data to quantify inequality between sociodemographic groups and to develop a more nuanced under-
standing of the drivers and trends in longitudinal air pollution inequality. Annual-average population-weighted
PM2.5 and NO2 concentrations were highest for urban non-Hispanic black populations (11.8 µg/m3 in 2003 and
8.4 µg/m3 in 2010, vs. 11.3 µg/m3 and 8.1 µg/m3 for urban non-Hispanic whites) and urban Hispanic popula-
tions (15.9 ppb in 2005 and 13.0 ppb in 2010, vs. 13.0 ppb and 10.2 ppb for urban non-Hispanic whites),
respectively. While population groups experienced similar absolute decreases in exposure over time, disparities
in population-weighted concentrations increased over time when quantified by the Atkinson Index, a relative
inequality measure. Exposure inequalities were approximately one order of magnitude greater for NO2 compared
to PM2.5, were more pronounced in urban compared to rural geographies, and between racial/ethnic groups
compared to income and educational attainment groups. Our results also revealed similar longitudinal PM2.5 and
NO2 inequality trends using Census 2000 and Census 2010 data, indicating that spatio-temporal shifts in air
pollution may best explain observed trends in inequality. These findings enhance our understanding of factors
that contribute to persistent inequalities and underscore the importance of targeted exposure reduction strate-
gies aimed at vulnerable populations and neighborhoods.

1. Background

Ambient exposure to nitrogen dioxide (NO2) and fine particulate
matter (PM2.5) have been associated with a range of adverse health
effects including increased risk of asthma and respiratory infections
(Brauer et al., 2002; O’Connor et al., 2008; Xing et al., 2016), adverse
birth outcomes such as early gestational age and low birth weight
(Brauer et al., 2008; Stieb et al., 2012; Zheng et al., 2016), increased
risk of autism spectrum disorders (Raz et al., 2015; Volk et al., 2013),
and all-cause mortality (Franklin et al., 2008; Shi et al., 2016).
Mounting evidence over the past several decades has demonstrated
inequitable distribution of exposure to PM2.5 and NO2 in the United
States among children and older adults, non-Hispanic black and His-
panic populations, low educational attainment and low income popu-
lations, potentially contributing to environmental health disparities
(Bell and Ebisu, 2012; Brugge et al., 2015; Clark et al., 2014; Morello-

Frosch and Lopez, 2006; Su et al., 2009).
However, there are three key limitations in the exposure inequality

literature to date. First, much of the environmental inequality (EI) re-
search is cross-sectional, examining environmental inequalities at one
point in time. This limits the ability to examine longitudinal trends or
the causal mechanisms that drive inequality (Legot et al., 2012; Mohai
et al., 2011; Pastor et al., 2004). In particular, there is limited insight
about whether disparities are driven by population shifts subsequent to
siting of hazardous facilities or roadways, disparate siting practices in
poor communities and communities of color, or policies focused on
decreasing ambient pollution that simply do not examine distributional
consequences. Investigators in both the sociological and environmental
health literature argue that residential segregation is a main driver of
environmental health disparities (Mohai and Saha, 2015; Morello-
Frosch and Lopez, 2006), so demographic shifts over time could have
an influence on land use practices, declining social capital and local
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economies and ultimately, community-level environmental exposures
(Mohai and Saha, 2015a; Pastor et al., 2004, 2001). Further, demo-
graphic change over time could modify inequalities even in the absence
of changes in air quality. Therefore, it is imperative to incorporate
demographic time trends in air pollution exposure inequality studies.

Second, a limited number of studies have used quantitative metrics
to assess EI over space and time. Quantifiable measures of exposure
inequality allow regulators to formally assess patterns of EI and to
maximize efficiency in exposure reduction policies that seek to reduce
environmental exposures, while simultaneously incorporating social
equity into distributional assumptions (Boyce et al., 2016; Harper et al.,
2013; Levy et al., 2007, 2006). A handful of environmental studies to
date have incorporated formal inequality indices to assess geographic
and social distribution of environmental hazards (Boyce et al., 2016;
Clark et al., 2014; Levy et al., 2007, 2006; Post et al., 2011; Su et al.,
2009). These previous studies have adopted welfare-based or health-
based measures of inequality to assess sociodemographic distributions
of exposure to a single hazard (Boyce et al., 2016; Clark et al., 2014;
Fann et al., 2011; Levy et al., 2006; Post et al., 2011) or cumulative
environmental hazards (Su et al., 2009). This paper employs the At-
kinson Index (AI) (Atkinson, 1970), a relative measure of inequality,
discussed in further detail below. Although some previous studies have
used the AI to quantify exposure inequality (Clark et al., 2014; Levy
et al., 2009, 2006; Post et al., 2011), these studies focused to a greater
extent on understanding the inequality implications of air pollution
control strategies, and not on longitudinal patterns of inequality.

Most EI studies examine inequitable distributions of hazardous fa-
cilities among population subgroups (Mohai and Saha, 2015a, 2015b).
A limited, but growing number of EI studies have examined inequalities
with respect to both hazardous facilities and traffic-related air pollution
using modeled or measured ambient concentrations. However, many
are at coarse geographic resolutions, ignore chemical fate and transport
and local meteorological conditions, and do not address longitudinal
trends in EI (Clark et al., 2014; Hajat et al., 2015; Kravitz-Wirtz et al.,
2016; Mohai and Saha, 2015b; Morello-Frosch and Jesdale, 2006; Pope
et al., 2016). Pollutants such as NO2 and PM2.5 have significant public
health burdens but are not typically dominated by local emissions from
hazardous facilities, reinforcing the importance of an exposure-based
analytical approach to identify EI occurring at smaller spatial scales.

In this paper, we quantify inequality in modeled ambient PM2.5 and
NO2 concentrations between racial, ethnic, income and education
groups across Massachusetts between 2003 and 2010 using methods to
address the three major limitations in this area of research. The work
applies a formal inequality index to examine patterns of exposure
among rural and urban populations as a means to identify populations
most vulnerable to air pollution exposure within the state. The avail-
ability of demographic data from the decennial 2000 and 2010 Census
at the block group level and modeled ambient air pollution at a 1 km2

resolution over an eight-year period provides us the unique opportunity
to examine inequalities over time and develop a more nuanced un-
derstanding of whether PM2.5 and NO2 exposure inequalities are driven
by demographic shifts or longitudinal pollution source distribution.

2. Methods

2.1. Data Sources

2.1.1. Ambient air pollution for Massachusetts, 2003–2010
Daily surface PM2.5 at a 1 km2 resolution was modeled from 2003 to

2010 using a 3-stage statistical modeling approach (Kloog et al., 2014).
This modeling approach used a combination of aerosol optical depth
(AOD) satellite data retrieved using the multi-angle implementation of
atmospheric correction (MAIAC) algorithm, land use and meteor-
ological predictors of variation in surface-PM2.5, and monitored PM2.5

concentrations (Kloog et al., 2014). This produced an overall “out-of-
sample” R2 for daily values of 0.88, and cross validation results

produced a slope of observed versus predicted of 0.99. Details of the
PM2.5 prediction models can be found in Kloog et al. (2014).

We used daily ground NO2 concentrations that were estimated for
the New England region from 2005 to 2010 at a 1 km2 resolution from a
combination of ground-level NO2 data at monitoring sites, satellite
Ozone Monitoring Instrument NO2 vertical column density data, and
land use regression (Lee and Koutrakis, 2014). Predictors in mixed ef-
fects models included population density, distance to major highways,
percent developed area, NO2 source emissions, elevation, and tem-
perature data. This model produced an R2 of 0.79 and cross validation
results produced a slope of observed versus predicted of 0.98, demon-
strating high predictive reliability. NO2 model details can be found in
Lee and Koutrakis (2014).

2.1.2. Demographic data
We gathered geographic distributions of race/ethnicity, income,

and educational attainment from the US Census and American
Community Survey (ACS) at the block group unit of analysis. Measures
of educational attainment and income were not collected in the de-
cennial 2010 Census. Therefore, we obtained race/ethnicity data from
Census 2010, and measures of income and educational attainment from
ACS 2006–2010 5-year estimates. We categorized block groups as rural
and urbanized centers according to Census classifications, which rely on
population density (Ratcliffe et al., 2016). We utilize Census data at two
distinct time periods, 2000 and 2010, rather than at 1-year intervals
over the decade under study because the non-decennial 1-year sum-
maries from the ACS are less-reliable, constitute a smaller sample size,
and were only collected starting in 2005.

We categorized population characteristics into the following groups:

• Race/ethnicity: individuals in each block group that self-identify as
non-Hispanic white, non-Hispanic Black, non-Hispanic Asian,
Hispanic or other

• Income: 1999 and 2010 inflation-adjusted median household in-
come as< $20,000/year, $20–35,000/year, $35–50,000/year,
$50–75,000/year, and>$75,000/year

• Educational Attainment: individuals in each block group ≥25 years
of age with less than a high school degree, high school graduate,
postsecondary degree, bachelors and graduate degree

We aggregated daily PM2.5 and NO2 concentrations to average an-
nual concentrations. Annual PM2.5 (years 2003–2010) and NO2 (years
2005–2010) concentrations were assigned to each block group centroid
using the closest 1 km2 grid cell centroid for each year over the study
period. This exposure assignment method was performed separately for
Census 2000 and ACS/Census 2010 block groups using ArcGIS 10.3
(ESRI, Inc.).

2.2. Statistical analysis

2.2.1. Summary statistics
We calculated summary statistics for Massachusetts of the number

and percentage of individuals and households within each racial/ethnic
and education group and the percentage change between 2000 and
2010 stratified by urban (densely developed territories with 50,000 or
more people (Census 2000, n = 4277; Census and ACS 2010, n =
4308)) and rural (any territory not defined as urban (Census 2000, n =
654; Census and ACS 2010, n = 596)) block groups (Table 1). Median
household income in 2010 dollars is also presented for both time points.
Due to the small number of block groups categorized by the Census
Bureau as “urban clusters,” territories containing between 2500 and
50,000 residents (Census 2000, n = 116; Census and ACS 2010, n =
75), these block groups were excluded from stratified analyses.
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