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A B S T R A C T

The performance of oil spill models is strongly influenced by multiple parameters. In this study, we explored the
ability of a genetic algorithm (GA) to determine optimal parameters without the need for time-consuming
manual attempts. An evaluation function integrating the percentage of coincidence between the predicted
polluted area and the observed spill area was proposed for measuring the performance of a Lagrangian oil
particle model. To maximise the objective function, the oil spill was run numerous times with continuously
optimised parameters. After many generations, the GA effectively reduced discrepancies between model results
and observations of a real oil spill. Subsequent validation indicated that the oil spill model predicted oil slick
patterns with reasonable accuracy when equipped with optimal parameters. Furthermore, multiple objective
optimisation for observations at different times contributed to better model performance.

1. Introduction

Oil spills are a major environmental concern and regarded as one of
worst types of marine pollution, some of which may have disastrous
consequences for open oceans and coastal seas. Considerable research
has been conducted on the transport of spilled oil using field and la-
boratory investigations. Numerical oil spill models, which predict the
transport and behaviour of oil spills, are an essential instrument for risk
assessment and clean-up during an actual accident. However, it is still
not possible to predict the actual trajectories of oil spills with any de-
gree of certainty. Over the last three decades, numerous detailed oil
spill models have been presented with the goal of improving oil spill
forecasting (ASCE, 1996; Reed et al., 1999; Spaulding, 2017). These
models have been developed from two-dimensional horizontal models
to three-dimensional multiphase models, from considering only oil on
the surface to oil distributed in multiple interacting phases, and from
including a single environmental factor to atmosphere–wave–current
coupled effects. Although these theories and data are valid, oil beha-
viour is complex, and many aspects of this behaviour are far from being
clarified satisfactorily.

Currently, oil spill models incorporate a range of parameters, partly
due to a lack of knowledge of the underlying mechanisms behind oil
transport and reaction processes. Hodges et al. (2015) argued that
empirical parameters are one of four major contributors to uncertainty

in an oil spill model. Complicated environmental conditions and the
complex mixture of hundreds of chemicals make every spill different,
and determining a unique set of appropriate parameters for each event
is impractical and difficult. For example, the 3% wind drift factor for oil
movement considers average conditions, and the implication just re-
presents average conditions and the actual factor ranges from 1 to 6%.
Once submerged, oil particles driven only by water currents have a net
lower drift speed than that assumed by the 3% rule. Moreover, oil
converging in windrows accelerates, and the transport velocity becomes
higher than the average 3%, and some variables, such as wind deflec-
tion angle, are disputed. Because an oil layer is too thin to experience
the full Ekman spiral, the wind deflection angle has previously been set
to zero (Coppini et al., 2011; Huntley et al., 2011). However, Samuels
et al. (1982) argued that the veering angle is related to wind speed;
when wind speeds are low, the average deflection angle can be as high
as 20°.

Understanding the model structure and underlying principles is a
key requirement for increasing model reliability. Parameter rational-
ities must first be widely accepted before model parameters can be
optimised, and without extensive experimentation, a model using ap-
proximated parameters may not simulate satisfactory results. Although
oil spill numerical results rely heavily on parameter rationality, near-
optimal parameters have typically been estimated by manual calibra-
tion to match observations of real-world phenomena. However, because
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numerous parameters are related to oil movements, determining the
most suitable ones is a time-consuming exercise that requires thorough
experimental analysis.

Instead of obtaining universal parameters applicable to any condi-
tion, this study evaluated a method for seeking the most suitable
parameters according to the location or event of interest. The genetic
algorithm (GA) technique, inspired by the principles of biological
evolution and natural genetics, has been widely adopted as an efficient
tool for searching near-optimal solutions to nonlinear, nonconvex and
multimodal problems (Gobeyn et al., 2017; Haupt and Haupt, 2004).
Previous studies have demonstrated robust, modern approaches for
employing GAs, which have been widely used in a variety of optimi-
sation and search problems. However, few studies have employed GAs
for optimising the parameter estimations of oil spill models.

When a GA is combined with an oil spill model under calibration,
the model must be executed for a number of iterations; the computa-
tional bottleneck issue is no longer a limitation due to progress in
computing equipment. Before GAs are implemented within oil spill
modelling, an objective function evaluating the fitness of each model
run should be provided in advance. Although there have been sig-
nificant research advances in oil spill dynamics, the qualitative com-
parisons between simulation and observation is universal. At present,
oil slicks on the sea surface can be accurately captured by observations
from aerial images and satellites, which provide comprehensive evi-
dence for the damage extent. Huntley et al. (2011) introduced two
metrics for measuring simulation success: the percentage of the pre-
dicted spill area contained in the observed area and that of the observed
polluted area contained in the simulated area. With the advent of fine-
scale remote sensing techniques, an algorithm judging from scattered
points to a whole plane seems more promising.

The purposes of this study are (1) to propose an objective function
for the quantitative assessment of oil spill model performance and (2) to
enhance model accuracy using of a GA. Following the introduction,
Section 2 describes the basics of the oil spill model incorporating op-
timised design process. In Section 3, we apply the proposed model to
the Dalian New Port accident that occurred on 16 July 2010. Section 4
presents the conclusions and applications of this study.

2. Methods

2.1. Environmental factors

Geographically, Dalian New Port is located on the boundary be-
tween the southern region of the Liaodong Peninsula and the North
Yellow Sea (Fig. 1). It is a major seaport in North China, that has led to
rapid economic growth in the region. However, this port has been af-
fected by severe oil spills, including those from Maya 8 in 1990, Ya He
in 2001, Arteaga in 2005, and most recently, the Dalian New Port ac-
cident in 2010 (Guo and Wang, 2009; Guo et al., 2014; Xu et al., 2012).
The Dalian New Port accident resulted in 35,000 t of crude oil being
discharged into the coastal area on 16 July 2010, making this the lar-
gest marine oil spill in China's history. The spilled oil contaminated
more than 300 km2 of sea area and 80 km of coastline to varying de-
grees (Fig. 1(d)).

Oil spill behaviour is determined by the surrounding environment
conditions as well as the physicochemical properties of the spilled oil;
therefore, combining accurate environmental dynamic information is
key for simulation accuracy. Hydrodynamic data (tides, currents and
waves) to study oil spill behaviour were obtained from a wave–current
coupled model. The current model in use is a semi-implicit
Eulerian–Lagrangian finite-element (SELFE) model, which is a state-of-
the-art, free-surface, primitive equation, hydrostatic model with
Boussinesq and hydrostatic approximations (Zhang and Baptista, 2008).
Considering that wave-driven current and wave breaking playing a
significant role in spreading out oil slicks and propelling permeating oil
droplets into the water column, wave data for this study were acquired

from a third-generation wave model called the Simulating Waves
Nearshore (SWAN) model (Booij et al., 1999), to solve transport
equations of wave action density. Wave–current interactions occur over
a wide range of both wave and current conditions; therefore, the SWAN
model is iteratively two-way coupled to the SELFE model (Guo et al.,
2016). Surface wind stress, bottom stress and radiation stress computed
in SWAN model were provided to the SELFE model, and in turn, the
SEFLE model offered current fields and water level elevation that were
used in the SWAN model to calculate wave parameters for the next time
step. The unstructured grid of the wave–current coupled model ex-
tended from Dalian New Port into the entire Bohai Sea and North
Yellow Sea. The finest resolution occurred near Dalian New Port, with a
grid spacing of approximately 20m, and the resolution was relatively
coarse, exceeding 1000m, in areas far from the spill source (Fig. 1). The
hydrodynamic model verification results were detailed in Guo et al.
(2014). The maximum deviation of significant wave height from the
measured values at the nearby monitoring location was within 0.2 m.
The average root-mean-square error for water level simulation was less
than 0.1m, and the mean correlation coefficient of current speed be-
tween the observed and simulated values was over 0.9. Overall, the
wave–current coupled model correctly reproduced the main hydro-
dynamic processes in the accident area waters and was capable of
providing credible information for oil spill simulation.

Wind data, employed for wind driven currents, were acquired from
re-analysis data based numerical results provided by the Weather
Research & Forecasting Model (WRF) spanning 20°–52°N and
117.5°–152°E. Despite the fine temporal and spatial resolution of the
WRF results (3-h time interval, and a horizontal resolution of 0.1° by
0.1°), the wind data used for calculating the oil particle trajectory were
obtained from the records (1-h time interval) of a local meteorological
station (Fig. 2), considering its vital role in determining spill trajectory
accuracy. The region is characterised by a typical medium latitude
monsoon climate, which consists of cold, dry winters and hot, wet
summers.

2.2. Oil spill model

In this study, the fate and transport of spilled oil was governed by
the advection under the actions of currents, wind, and surface waves;
mechanical spreading of inertia, gravitational, surface tension and
viscous forces; horizontal diffusion due to turbulence and shear effect;
vertical entrainment and resurfacing; weathering processes such as
evaporation, emulsification and dissolution; and the interaction of oil
with the coastline (Fig. 3).

Considering the amount of oil released as a larger number of virtual
particles that are tracked individually is an approach that has been
widely adopted, and the model that employs this approach is known as
the oil particle model. In this particle-based approach, oil spill move-
ments are computed according to transport forced by advection (cur-
rents, winds, and surface waves) and turbulent diffusion. The advection
velocity of an oil particle is computed as follows:

→
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→
+

→
+

→
U C U C D U C Ucr cr wind wind wind wave wavea (1)

where
→
Ucr is the water current velocity interpolated from the hydro-

dynamic model;
→
Uwind is the wind velocity 10m above the water surface,

Cwind is the wind drift factor, Dwind is a transformation matrix used to
account for the wind deflection angle,

→
Uwave represents the calculated

wave Stokes drift, and Cwave is the wave drift factor.
The wind deflection angle is calculated as follows (Samuels et al.,

1982):

= − −θ D U νgexp( 10 / )a wind
8 3 (2)

where ν is the kinematic viscosity of seawater. As opposed to its original
form, the constant Da is replaced by a variable.

→
Uwave represents the wave Stokes drift, calculated as follows:
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