Contents lists available at ScienceDirect

Geoderma Regional

journal homepage: www.elsevier.com/locate/geodrs

Urease producing microorganisms under dairy pasture management in soils across New Zealand

Hossein Alizadeh^{a,*}, Diwakar R.W. Kandula^a, John G. Hampton^a, Alison Stewart^b, David W.M. Leung^c, Yasmine Edwards^d, Carol Smith^e

^a Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand

^b Scion, Rotorua 3046, New Zealand

^c School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand

^d School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand

e Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand

ARTICLE INFO

Keywords: Urease producing microorganisms Ryegrass Urea fertiliser Nitrogen Inceptisol Entisol

ABSTRACT

Urea, the most commonly used nitrogen fertiliser in New Zealand, can be quickly lost from the system via ammonia volatilisation or nitrate leaching following hydrolysis of urea by urease producing soil microorganisms (UPSMs). This study investigated UPSMs involved in urea degradation for upcoming research to reduce soil urease activity. Soils from under dairy pasture management across New Zealand, with a pasture species component of ryegrass (*Lolium perenne* L.) and white clover (*Trifolium repens* L.) and aged between 9 months to 60 years old, were collected, and UPSMs were isolated and identified using both polymerase chain reaction (PCR)-based molecular and conventional methods. The fungal genera belonged to diverse taxonomical groups including the phylum Ascomycota: class: Dothideomycetes, Eurotiomycetes, Leotiomycetes and Sordariomycetes, the phylum Basidiomycota: class: Tremellomycetes and the phylum Zygomycota: order: Mucorales, all of which have a role in urea degradation in soil. Pasture soil-resident urease producing bacteria belonged to the Gammaproteobacteria and Betaproteobacteria. *Cupriavidus* sp. and *Mucor hiemalis* showed strong urease activity when cultured on urease medium. This is the first report on the urease activity of the pasture soil inhabitants *Pochonia bulbillosa, Mariannaea elegans* and *Gliomastix* sp. This study was part of a larger study underway to investigate control of UPSMs in soil to improve the efficiency of urea utilisation.

1. Introduction

Nitrogen (N), a key nutrient for the grass component of dairy pastures, is commonly applied as urea. However, urea N can be quickly lost from the system via ammonia volatilization or nitrate leaching because of urea hydrolysis following the activities of urease producing soil microorganisms (Juan et al., 2009). N availability to the plant is therefore reduced, and the subsequent production of nitrous oxide and leaching of soil nitrate are contributors to environmental damage (Denier van der Gon and Bleeker, 2005). A correlation between lowered nitrous oxide emissions and a low concentration of soil ammonium nitrogen (which is a product of urea hydrolysis by urease) in wheat fields has been demonstrated (Jiang et al., 2015).

Urease (urea amidohydrolase; EC 3.5.1.5) is a nickel-dependent enzyme which can catalyse the conversion of urea to ammonia and carbon dioxide (Sirko and Brodzik, 2000), although the reason why the enzyme requires nickel but not other metals is not understood (Carter

et al., 2009). Urease was the first enzyme that was crystallised (in 1926) from jack bean and its substrate, urea, was also the first organic molecule ever synthesised in a laboratory (in 1828) (Sirko and Brodzik, 2000). Urease can be found in plants, fungi, bacteria and some invertebrates, but not in animals (Carlini and Polacco, 2008; Polacco and Holland, 1993; Sirko and Brodzik, 2000; Smith et al., 1993). In general, urease enables the organism to use urea as a nitrogen source. In some bacteria, such as Klebsiella aerogenes, urea hydrolysis has enabled them to use urea as a sole source of nitrogen (Sirko and Brodzik, 2000). Urea is also assimilated by urease in plants (Sirko and Brodzik, 2000). In many human pathogens (e.g. Proteus mirabilis, Yersinia enterocolitica, Staphylococcus saprophiticus, Helicobacter pylori and Ureaplasma urealiticum), urease can act as a virulence factor, and this has been used as a simple test to identify virulent isolates. Hydrolysis of urea by Helicobacter pylori, the agent of peptic ulceration, in the stomach, is a method for this bacterium to increase pH of the acidic environment and colonise it (Carter et al., 2009; Follmer et al., 2004; Mobley et al., 1995;

* Corresponding author. E-mail address: hossein.alizadeh@lincoln.ac.nz (H. Alizadeh).

http://dx.doi.org/10.1016/j.geodrs.2017.10.003

Received 14 July 2017; Received in revised form 10 October 2017; Accepted 12 October 2017 2352-0094/ © 2017 Elsevier B.V. All rights reserved.

Table 1

Urease producing microorganisms.

No.	Scientific name	Reference
A. Fu	ingi, actinomycetes and yeast species	-
1	Absidia sp.	Donnison et al., 2000
2	Alternaria tenuissima	Hasan, 2000
3	Aspergillus flavus, A. fumigatus, A. niger	Hasan, 2000 & Smith et al., 1993
4	Aureobasidium pullulans	Hasan, 2000
5	Botrytis cinerea	Strope et al., 2011
6	Cladosporium herbarum	Hasan, 2000
7	Coccidioides immitis	Sirko and Brodzik, 2000
8	Cochliobolus heterostrophus	Strope et al., 2011
9	Coprinus sp.	Hasan, 2000
10	Cryptococcus neoformans	Hasan, 2000
11	Emericella nidulans	Hasan, 2000
12	Fusarium nivale	Hasan, 2000
13	Geomyces destructans	Reynolds and Barton, 2014
14	Humicola grisea	Hasan, 2000
15	Magnaporthe oryzae	Strope et al., 2011
16	Malassezia furfur	Hasan, 2000
17	Mucor racemosus	Hasan, 2000
18	Mycosphaerella graminicola	Strope et al., 2011
19	Nectria haematococca	Strope et al., 2011
20	Neurospora sp., N. crassa	Hasan, 2000 & Strope et al.,
20	Neurospora sp., N. crassa	2011
21	Paecilomyces silvatica	Hasan, 2000
22	Penicillium spp., P. brevicompactum, P.	Hasan, 2000
	notatum	
23	Rhizopus oryzae	Strope et al., 2011
24	Saccharomyces cerevisiae	Hasan, 2000
25	Saccharomycopsis Malanga	Hasan, 2000
26	Schizosaccharomyces pombe	Sirko and Brodzik, 2000
27	Sepedonium chrysospermum	Hasan, 2000
28	Stagonospora nodorum	Strope et al., 2011
29	Streptomyces aureofaciens	Hasan, 2000
30	Trichophyton mentagrophytes	Hasan, 2000
31	Ustilago spp.	Hasan, 2000
B. Bacteria		
32	Anabaena cycadeae	Hasan, 2000
33	Arthrobacter crystallopoietes	Wen et al., 2015
34	Bacillus lentus, B. subtilis, B. sphaericus	Hasan, 2000
35	Bordetella pertussis	Strope et al., 2011
36	Brevibacterium ammoniagenes, B. stationis	Burbank et al., 2012 & Hasan, 2000
37	Burkholderia sp.	Strope et al., 2011
38	Corynebacterium glutamicum	Wen et al., 2015
39	Enterobacter cloacae	Kang et al., 2015
40	Helicobacter pylori	Carter et al., 2009
40 41	Klebsiella aerogenes	
41 42	Kiebsiella aerogenes Kocuria marina	Mobley et al., 1995 Wen et al. 2015
42 43	Lactobacillus reuteri	Wen et al., 2015 Hasan, 2000
44	Lysinibacillus sphaericus	
44 45	Morganella morganii	Burbank et al., 2012 Mobley et al., 1995
		and the second
46 47	Mycobacterium tuberculosis	Strope et al., 2011 Hasan, 2000
47 48	Nitrosomonas sp.	
48 40	Nitrosospira sp.	Hasan, 2000
49 50	Proteus mirabilis	Carter et al., 2009
50	Providencia vermicola	Burbank et al., 2012
51	Pseudomonas aeruginosa, P. fluorescens	Wen et al., 2015 & Strope et al., 2011
52	Rhodobacter capsulatus	Hasan, 2000
53	Sarcina urea	Hasan, 2000
54	Sinorhizobium medicae	Strope et al., 2011
55	Sporosarcina pasteurii, S. ureae	Burbank et al., 2012 & Mobley
	-r · · · · · · · · · · · · · · · · · · ·	et al., 1995 & Wen et al., 2015
56	Staphylococcus saprophiticus	Mobley et al., 1995
57	Stephylococcus salivarius	Hasan, 2000
58	Thiocapsa roseopersicina	Hasan, 2000
58 59	Ureaplasma urealyticum (with the	Mobley et al., 1995
39	highest urease activity demonstrated)	MODICY CL dl., 1990
60	Vibrio parahaemolyticus	Sirko and Brodzik, 2000
60 61	Yibrio paranaemotyticus Yersinia enterocolitica, Yersinia pestis	Strope et al., 2011 & Mobley
01	reisina eneroconnea, reisina pesus	subject al., 2011 & WODIey

et al., 1995

Sirko and Brodzik, 2000). Recently, it was demonstrated that blocking urease could improve plant tolerance to salt during seed germination as a result of reduced ammonium production (Bu et al., 2015).

Soil urease activity can be affected by factors including moisture, temperature, soil organic matter, pH and the rate of fertiliser applied (Carter et al., 2009). A number of microorganisms have been reported to produce urease (Table 1).

Around 90% of applied urea can be hydrolysed in the soil within 1–2 days of the application (Hojito et al., 2010). The half-life of urea degrading spontaneously (even at 57 °C) is around 3.6 years, (Hasan, 2000) but in the presence of urease it can be degraded 10,000 times faster (Amtul et al., 2002) suggesting a need for urease inhibitors. A number of enzymatic chemical inhibitors have been developed (Mobley et al., 1995). The use of Agrotain, a commercial urease inhibitor, in New Zealand ryegrass pastures has been reported to increase N uptake and herbage dry matter (Dawar et al., 2011).

New Zealand's pastoral production industries are heavy users of nitrogen (N) fertilisers (Moir et al., 2007). Despite the importance of urea and the environmental implications of its degradation in agricultural soils, the potential contribution of the urease producing microorganisms inhabiting pasture soils has not been investigated. The current study was designed to isolate and identify New Zealand's urease producing soil microorganisms. The results can be used for future studies to work on urease reduction strategies in pastures.

2. Materials and methods

2.1. Soil sample collection and processing

Soil samples were obtained from ryegrass (*Lolium perenne* L.) - white clover (*Trifolium repens* L.) based pastures under dairy management (hereafter referred to as pasture soils) in New Zealand located in Auckland, Canterbury, Manawatu, Marlborough, Nelson, Otago, Taranaki, Waikato, Wairarapa and West Coast (Table 2). To take samples, a straight sampling line (mostly a diagonal from corner to corner of a field) was selected and along the line six samples of similar size (400 g) were taken using a soil corer to a depth of 15 cm. The soil samples were thoroughly mixed and approximately 1 kg soil for each sample at each sampling time was placed in a sealed bag which was transferred to the laboratory and kept in a refrigerator until used for the experiments.

2.2. Urease detection medium

To detect microbial urease activity, a urease detection medium was prepared according to Christensen (1946) and MacFaddin (2000) with some modifications. Briefly, 1 g peptone, 1.5 g dextrose, 1.2 g sodium chloride, 0.016 g phenol red, 0.1 g nickel (II) sulphate, and 0.8 g monopotassium phosphate were dissolved in distilled water, pH was adjusted to 6.8 and after adding 18 g agar to the medium, the final volume was made to 800 ml and autoclaved. Urea (20 g product) was separately dissolved in distilled water up to a volume of 200 ml. The solution was sterilised using a Millipore membrane (0.22 μ m sterile filter units), added to the autoclaved medium prior to agar setting (45 °C) and dispensed to 8 cm Petri plates.

2.3. Isolation of UPSMs from soil

One gram of each soil was placed in 9 ml sterile water in a Universal container and shaken for 10 min. A serial dilution was prepared and 100 μ l from each dilution was spread on urease detection medium. The Petri plates were incubated at 23 °C and colonies with a pink zone (Christensen, 1946) were isolated, cultured and purified (fungi using either a single spore or hyphal tip method; Rangaswami and Bagyaraj,

Download English Version:

https://daneshyari.com/en/article/8873269

Download Persian Version:

https://daneshyari.com/article/8873269

Daneshyari.com