Accepted Manuscript

Model-based approach for cyber-physical attack detection in water distribution systems

Mashor Housh, Ziv Ohar

PII: S0043-1354(18)30235-5

DOI: 10.1016/j.watres.2018.03.039

Reference: WR 13658

To appear in: Water Research

Received Date: 16 October 2017
Revised Date: 13 March 2018
Accepted Date: 14 March 2018

Please cite this article as: Housh, M., Ohar, Z., Model-based approach for cyber-physical attack detection in water distribution systems, *Water Research* (2018), doi: 10.1016/j.watres.2018.03.039.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1 2	Model-based Approach for Cyber-Physical Attack Detection in Water Distribution Systems
3	Mashor Housh ^{1,*} and Ziv Ohar ¹
4	¹ Faculty of Management, Department of Natural Resource and Environmental
5	Management, University of Haifa, Haifa, Israel
6	* Corresponding author, mhoush@univ.haifa.ac.il
7	Abstract
8	Modern Water Distribution Systems (WDSs) are often controlled by Supervisory
9	Control and Data Acquisition (SCADA) systems and Programmable Logic
10	Controllers (PLCs) which manage their operation and maintain a reliable water
11	supply. As such, and with the cyber layer becoming a central component of WDS
12	operations, these systems are at a greater risk of being subjected to cyberattacks. This
13	paper offers a model-based methodology based on a detailed hydraulic understanding
14	of WDSs combined with an anomaly detection algorithm for the identification of
15	complex cyberattacks that cannot be fully identified by hydraulically based rules
16	alone. The results show that the proposed algorithm is capable of achieving the best-
17	known performance when tested on the data published in the BATtle of the Attack
18	Detection ALgorithms (BATADAL) competition (<u>http://www.batadal.net</u>).
19 20	
21	Keywords: cyber-physical systems, water distribution systems, event detection
22	methodology, model-based fault detection, cyber-attacks

Download English Version:

https://daneshyari.com/en/article/8873922

Download Persian Version:

https://daneshyari.com/article/8873922

<u>Daneshyari.com</u>