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a b s t r a c t

Current guidelines for testing drinking water quality recommend that the sampling rate, which is the
number of samples tested for fecal indicator bacteria (FIB) per year, increases as the population served by
the drinking water system increases. However, in low-resource settings, prevalence of contamination
tends to be higher, potentially requiring higher sampling rates and different statistical methods not
addressed by current sampling recommendations. We analyzed 27,930 tests for FIB collected from 351
piped water systems in eight countries in sub-Saharan Africa to assess current sampling rates, observed
contamination prevalences, and the ability of monitoring agencies to complete two common objectives
of sampling programs: determine regulatory compliance and detect a change over time. Although FIB
were never detected in samples from 75% of piped water systems, only 14% were sampled often enough
to conclude with 90% confidence that the true contamination prevalence met an example guideline (�5%
chance of any sample positive for FIB). Similarly, after observing a ten percentage point increase in
contaminated samples, 43% of PWS would still require more than a year before their monitoring agency
could be confident that contamination had actually increased. We conclude that current sampling
practices in these settings may provide insufficient information because they collect too few samples. We
also conclude that current guidelines could be improved by specifying how to increase sampling after
contamination has been detected. Our results suggest that future recommendations should explicitly
consider the regulatory limit and desired confidence in results, and adapt when FIB is detected.
© 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

While more than 2.6 billion people have gained access to an
improved water source over the last 25 years, recent evidence
suggests that many of these improved sources do not provide
drinking water that is safe (Onda et al., 2012; Bain et al., 2014a;
Shaheed et al., 2014; WHO and UNICEF, 2015). Measurements of
water quality are important for managing and controlling water
safety and tracking progress to national and global targets such as
the Sustainable Development Goals (WHO and UNICEF, 2014, 2017).
Water management agencies around the world sample microbial
drinking water quality to assess whether systems provide water

that minimizes risks to health (Rahman et al., 2011; Peletz et al.,
2016). Water quality can be monitored for regulatory or opera-
tional purposes: regulatory (or verification) monitoring is per-
formed to ensure that a water supply meets standards, while
operational monitoring is used to assess operations and detect
changes in performance (WHO, 2011). However, collecting samples
and testing water quality can be expensive, time-consuming, and
logistically complicated (Crocker and Bartram, 2014; Wright et al.,
2014; Bain et al., 2014b; Peletz et al., 2016).

Many countries in sub-Saharan Africa (SSA) have adopted or
adapted the recommendations in the World Health Organization
(WHO) Guidelines for Drinking Water Quality (GDWQ) for the
design of their sampling program (Peletz et al., 2016). In practice,
many water management agencies in SSA conduct some testing but
have not tested enough samples to meet the GDWQ recommen-
dations for the number of samples tested (Peletz et al., 2016).
Therefore, optimizing testing is a priority, particularly in low-
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resource settings where testing activities are constrained and the
prevalence of contamination tends to be higher. Previous research
on improving the efficacy of sampling has focused on piped sup-
plies in high-income countries that have generous information
about their network (e.g. historical data, pipe maps), reliably
continuous water supply, and infrequent contamination (Speight
et al., 2004; Grayman et al., 2007; van Lieverloo et al., 2007;
Horowitz, 2013; Rosen et al., 2009). However, corresponding ana-
lyses on improving the effectiveness of sampling in middle- and
low-income countries, which often have limited system data, un-
reliable supplies, and frequent contamination, have not been per-
formed (Lee and Schwab, 2005). To account for the higher
prevalence of contamination, more frequent sampling and different
statistical methods may be necessary; current sampling recom-
mendations do not address this possibility.

Sampling plans should achieve the goals of a monitoring pro-
gram while balancing accuracy of results with ease of application
and understanding. The GDWQ recommend a minimum number of
samples for FIB be tested annually for regulatorymonitoring (WHO,
2011); the 2011 GDWQ substantially increased sampling in very
large systems (where budgets and health risks may both be larger)
and switched from monthly to yearly targets (which may decrease
operational costs) as compared to previous editions of the GDWQ
(WHO, 1993, 2008). The GDWQ also recommend that none of the
tested samples should be found positive for FIB (WHO, 2011).
Standards such as these which focus on the allowable number of
positive samples are easy to implement and understand, but their
statistical power cannot be evaluated. However, in practice, stan-
dards that allow no positive samples are indistinguishable from
high percentile standards (e.g. � 1% chance of detecting FIB in any
sample), whose statistical power we can assess (Ellis, 1989). Simi-
larly, Hunter (2002) compared assessing compliance of bathing
water with regulations using a threshold approach (95% of samples
complying with water quality standards) to using a percentile
approach (the 95th percentile of observed values should not exceed
the water quality standard) and found that the percentile method
complicated the calculation without changing the regulatory de-
cision. While sampling programs should consider resource and
logistical constraints, it is also important to have confidence in the
accuracy of the information obtained from a water quality moni-
toring program, as false positives could lead to expending resources
unnecessarily, and false negatives could result in detrimental
health consequences.

We analyzewhat can be learned from pastmonitoring programs
that tested piped water quality in SSA by evaluating each system's:
1) sampling rate and contamination prevalence; 2) ability to assess
compliance against a regulatory limit; and 3) ability to detect
changes in water quality over time. Our aim is to identify how to
increase the effectiveness of sampling recommendations for piped
water systems in low-resource settings; we use these results to
inform our recommendations for improving current sampling
practices and guidelines.

2. Methods

2.1. Data collection

Water quality data were collected as part of the Monitoring for
Safe Water (MfSW) program from eight countries in SSA: Benin,
Ethiopia, Ghana, Guinea, Kenya, Senegal, Uganda, and Zambia
(Peletz et al., 2013, 2016; Kumpel et al., 2016). A full description of
the MfSW program and participating agencies are described in
Peletz et al. (2016) and Kumpel et al. (2016). Sampling and testing of
drinking water was conducted by monitoring agencies responsible
for regulatory monitoring of water quality. These included water

suppliers (Supplier), responsible for providing and monitoring
piped water, and health or water surveillance agencies (Surveil-
lance), responsible for monitoring and ensuring the quality of all
water sources in their jurisdiction. Some information about sam-
pling locations were available for 71% of samples in the database,
although these include varying levels of detail (Fig. S1).

Water quality datawere collected during two stages of MfSW: 1)
retrospective data, collected from agencies that had applied to
MfSW (with samples tested between Jan 2009eDec 2013) and 2)
MfSW-supported data, collected by participating monitoring
agencies every month (with samples tested between Jul 2013eApr
2015). The average number of samples taken over time (sampling
rate) by a given agency increased during the MfSW program since
the program provided financial support and incentives to agencies
to reach sampling rate targets (Peletz et al., 2013); therefore, the
retrospective data represents baseline conditions while the MfSW-
supported data represents a ‘best-case-scenario’ for sampling rate.

2.2. Statistical model for water quality in a piped water system

The microbial quality of piped water varies spatially and
temporally throughout a system (Ellis, 1989; Geldreich, 1996).
Spatial variations may be introduced by increasing water age,
consumption of free chlorine, or point sources of contamination
(e.g. backflow or intrusion). Similarly, temporal variations may be
induced by changes in source water quality, treatment efficacy,
system parameters (e.g. flow rates or pressures), momentary low
pressure events (e.g. from maintenance or pressure transients), or
time varying contaminant sources (e.g. increased intrusion after
rainfall). Any water quality sample that tests positive for FIB pro-
vides the utility with specific and conclusive evidence of a problem
that existed at a specific time and a specific location in their system.
However, from a regulatory perspective, the important question is
not the quality of a specific sample at location X and time Y, but, on
average, the overall safety of the water distributed by this piped
water system (Ellis, 1989). Ellis (1989) suggests four possible ways
to account for the temporal and spatial variability of water quality:
first, by randomizing samples over space and time; second, by
selecting sampling locations representative of ‘average’ conditions;
third, by selecting sampling locations representative of the ‘worst’
conditions; and finally, by modeling the sources and distribution of
contamination and adjusting the sampling strategy accordingly.

Volume 3 of the GDWQ for community supplies recommends
that sampling locations should be “representative of the water
source, treatment plant, storage facilities, distribution network,
points at which water is delivered to the consumer, and points of
use” (WHO, 1997). More conservatively, the 2011 GDWQ recom-
mend that samples should be taken at locations with the “best
possible chance of detecting contamination” (WHO, 2011). In either
case, however, repeated samples from fixed locations can bias the
results (Cotter, 1985), and dramatically so where a sampling agency
takes action to address contamination after it is detected.

Unfortunately, it was not possible to verify how sampling
agencies selected sampling locations. Further, as sampling locations
were not uniformly repeated or randomized, credibly accounting
for the spatial variations in the samples was beyond the scope of
this work. The primary drivers of temporal variations are season-
ally- and weather-dependent, both of which are geographically
dependent. Given the geographic dispersion in our dataset, ac-
counting for climatic and weather phenomena was beyond the
scope of this work.

Therefore, as a starting point for more refined statistical models
in the future, and following with analyses conducted in high-
income contexts (Ellis, 1989; Cotter, 1985), we combine temporal
and spatial sources of variance. Specifically, we model sampling a
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