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A B S T R A C T

Livestock farming system (LFS) models are used to produce key technical or economic outputs. Current models
simulate multicriteria performance of LFS, i.e. technical, economic and environmental outputs. Therefore,
conducting sensitivity analysis (SA) of these models is increasingly challenging. We developed a pig fattening
unit model which is a stochastic, discrete-event mechanistic model with a one-day time step. An individual-based
model is used to represent the pigs. Our objective was to perform a global SA of this model while accounting for
effects of parameters on all outputs. Due to the model's long computational time, we first performed screening SA
using the Morris method to identify and exclude non-influential parameters, and then performed variance-based
SA of the influential parameters using metamodels. The most influential parameters were mainly pig char-
acteristics and the disinfection period. This study provides a generic SA sequence adapted for models with a high
computational cost and multiple outputs.

1. Introduction

Livestock farming system (LFS) models are useful to study and un-
derstand the mechanisms by which these systems respond to changes in
their environment and/or management (Pla, 2007; Gouttenoire et al.,
2011; Ozkan et al., 2016). These models usually focus on one or a few
issues (e.g. disease spread (Lurette et al., 2008), reproductive perfor-
mance (Martel et al., 2009), emissions to the environment (Rigolot
et al., 2010)). More recent studies developing LFS models have ad-
dressed many more issues; consequently, these models have provided
multiple outputs related to the multicriteria evaluation of sustainability
(Chardon et al., 2012; Ozkan et al., 2016). This shift to multiple outputs
raises several issues during model calibration, identification of key
parameters, and evaluation of the accuracy of predictions. These steps
of the modelling process are essential to ensure that model behaviour is
consistent with expert knowledge, that the model is free of coding er-
rors, and that its use is consistent with its range of validity. Among
these steps, sensitivity analyses (SA) are commonly used for these
complex models to identify the parameters that influence model outputs
the most (Iooss and Lemaître, 2015). Two types of SA are used in the
literature: local and global. Currently, local and screening SA are the
most common methods used to study the behaviour of LFS models
(Rigolot et al., 2010; Reckmann et al., 2013; Groen et al., 2016;

Kebreab et al., 2016; Pearson et al., 2016). Local SA consists of varying
one parameter at a time in a given range (often±10% around its
mean). This approach, which is fast and simple, does not require many
simulations. However, it does not assess the true sensitivity of model
outputs to parameters nor consider potential interactions among para-
meters. In contrast, global SA consists of changing all tested parameters
over their entire intervals of variation, which provides an appropriate
evaluation of model sensitivity and interactions among parameters.
However, it requires more simulations and raises issues about the
amount of time the latter will require. Several studies have applied
global SA and suggested that both screening and variance-based SA
steps must be performed (Saltelli and Annoni, 2010; Schouten et al.,
2014), to select with the screening SA the most contributing parameters
which contribution is then quantified with the variance-based SA. To
our knowledge, however, they have not combined the existing analyses
into a general strategy for global SA of models with multiple outputs
and a relatively long computational time (> 1min). This generates the
following issues: how to minimise the amount of time required for SA
simulations, and how to perform screening and variance-based SA for
models with multiple outputs.

In a previous study (Cadero et al., 2018), we developed a simulation
model of a pig fattening unit which predicts multiple performance in-
dicators in three dimensions: technical, economic and environmental
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(the last one via Life Cycle Assessment (LCA)). The model accounts for
interactions among farm management, pig biological characteristics
and farm infrastructure. The model uses an individual-based approach
to simulate 14,000 fattening pigs; thus, each simulation of a two-year
production period takes approximately 5min. Computational cost is an
important issue to consider when performing global SA, which require
hundreds, if not thousands, of simulations. For models with a long
computational time, studies usually recommend using local or
screening SA, and excluding non-influential parameters for variance-
based SA (Ginot et al., 2006; Imron et al., 2012), or building meta-
models first and then performing variance-based SA (dos Santos and dos
Santos, 2009; Marrel et al., 2011; Iooss and Lemaître, 2015).

The present study aimed to (i) perform an adequate global SA of our
model and use the SA results to help transform the model into a deci-
sion support tool and (ii) develop a chain of analyses for SA of LFS
models with multiple outputs and a long computational time.

2. Material and methods

2.1. Description of the fattening unit model

The fattening unit model is a discrete-event mechanistic model
which has stochastic biological traits (pig intake, growth potential and
risk of mortality) and a one-day time step (Cadero et al., 2017). The pig
fattening system consists of three entities: the pig herd, farm manage-
ment and farm infrastructure. The pig herd is divided into successive
batches of pigs of the same age which are reared in the same room from
the beginning of the fattening period until shipping to the slaughter-
house. Pigs are represented using an individual-based model adapted
from the InraPorc model (van Milgen et al., 2008). The InraPorc model
simulates feed intake, body protein and body lipid depositions, and the
resulting growth and nutrient excretion of each pig. Each pig is at-
tributed a profile which includes an initial weight and parameters de-
scribing its feed intake and growth potential, set to generate the ap-
propriate variability within a pig herd in terms of mean growth and
feed intake performance according to Vautier et al. (2013). The man-
agement of the farm is represented through practices and a calendar of
events containing tasks to perform. Each day, information from the
herd and the calendar of events are sent to the farmer. The calendar is
updated by adding or removing events according to this information,
and the events corresponding to the current day are processed. The
practices include batch management, allocation of pigs to pens, feeding
practices and slaughter shipping practices. Farm infrastructure is re-
presented by a number of fattening rooms, each with a number of pens
of a given size, which are provided as input parameters to the model. A
buffer room can be used at the end of the fattening period to extend the
fattening period of the lightest pigs which have not reached the
minimum slaughter weight without economic penalties. Once the last
pigs in a batch are moved to the slaughterhouse or in the buffer room, a
fattening room is considered empty after a disinfection period. The
model calculates technical, economic and environmental results for
each fattening pig and globally for the unit. Environmental impacts of
each slaughtered pig are estimated using LCA, taking into account
impacts from the extraction of raw materials to the farm gate. En-
vironmental impacts of producing piglets in farrowing and post-
weaning units are calculated according to average references of animal
performance (IFIP, 2015) and feed composition. Environmental impacts
of feed ingredients came from the ECOALIM dataset (Wilfart et al.,
2016), while those of feed transport and processing came from Garcia-
Launay et al. (2014). Background data (i.e. impacts of road transport,
electricity, light fuel oil and natural gas used in the pig unit) came from
the ecoinvent database V3.1 (Weidema et al., 2013). A system expan-
sion approach was used to estimate impacts of manure use (Garcia-
Launay et al., 2014). Processes for manure transport and spreading
came from AGRIBALYSE V3.1 (Koch and Salou, 2015). We considered
potential impacts of the fattening pig unit on climate change (CC, 100-

year horizon, kg CO2-eq), eutrophication potential (EU, g PO4
−-eq),

acidification potential (AC, g SO2-eq), cumulative energy demand
(CED, MJ) and land occupation (LO, m2year). More detailed description
of the model and the LCA performed by the model can be found in
Cadero et al. (2017).

2.2. A three-step sensitivity analysis sequence

We developed and applied a global SA sequence to estimate the
sensitivity of model outputs to input parameters. To address the long
computational time and large numbers of parameters and outputs, we
combined a screening SA method, i.e. the Morris (1991) method, con-
struction of metamodels with the most influential parameters, and a
variance-based SA method, i.e. the Sobol method (Sobol, 1993; Saltelli,
2002). Focusing on the most influential parameters with the screening
SA and using metamodels decreases the computational cost time of the
variance-based SA. Another challenge was to assess the influence of the
parameters on multiple outputs of different dimensions (technical,
economic and environmental). For this purpose, we calculated Morris
indices according to Sin and Gernaey (2009) in order to obtain non-
dimensional indices that can be compared between outputs. We cal-
culated Sobol first (without interaction between parameters) and total
order (including all interactions between parameters) indices with a
method adapted from Lamboni et al. (2011) and Gamboa and Janon
(2014) to obtain aggregated indices for each input. This provided a
three-step SA sequence to assess the model (Fig. 1).

To begin the SA, we selected the parameters, outputs and scenarios
for which the SA would be performed. A scenario consists of a combi-
nation of fixed values for qualitative inputs of the model (e.g. type of
batch management, ad libitum or restricted distribution of feed) which
are not tested in the SA.

The first step is to screen the parameters with the Morris method to
identify those which are least influential for all outputs and scenarios.
To obtain stable value of sensitivity indices with the variance-based SA,
a high number of simulations has to be performed, sometimes up to
10,000 simulations per parameter (Faivre et al., 2013). Therefore, to
limit the number of simulations and ensure stable variance-based sen-
sitivity indices, we selected a maximum of 10 most influential para-
meters from the Morris SA.

The second step is to construct metamodels using the influential
parameters and then to evaluate the metamodels (Wallach et al., 2014).
A metamodel is a simple approximation of a complex model. It is
constructed from simple mathematical functions to simulate the beha-
viour of the original model under specific conditions. We constructed
one metamodel per output and per scenario.

The third step is to perform variance-based SA with the Sobol
method using the influential parameters and metamodels. Results of
this step are Sobol first- and total-order indices for all parameters
analysed.

Before applying this SA sequence, we assessed effects of model
stochasticity on variability in its outputs. Parameters were set at their
default values, and 100 simulations were performed for each scenario.
The mean coefficient of variation of the outputs was 0.4%, with a
maximum of 3.4% for the gross margin (Table B.1 in supplementary
material). Given the small influence of stochasticity on mean output
values and the increase in computational time (×100) required for
replicate stochastic simulations, we set the model's random seed to the
same value for all simulations.

2.3. Selection of the parameters, outputs, and scenarios

The model contains 41 input factors, of which 14 are discrete
variables describing management practices, and 12 are either set or
calculated from other factors. The 15 remaining factors are continuous
parameters and were tested in the SA (Table 1). Lower and upper
boundaries of the parameters, used to design the SA, were set according
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