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A B S T R A C T

Process-based agricultural models, applied in novel ways, can reproduce historical crop yield anomalies in the
US, with median absolute deviation from observations of 6.7% at national-level and 11% at state-level. In
seasons for which drought is the overriding factor, performance is further improved. Historical counterfactual
scenarios for the 1988 and 2012 droughts show that changes in agricultural technologies and management have
reduced system-level drought sensitivity in US maize production by about 25% in the intervening years. Finally,
we estimate the economic costs of the two droughts in terms of insured and uninsured crop losses in each US
county (for a total, adjusted for inflation, of $9 billion in 1988 and $21.6 billion in 2012). We compare these
with cost estimates from the counterfactual scenarios and with crop indemnity data where available. Model-
based measures are capable of accurately reproducing the direct agro-economic losses associated with extreme
drought and can be used to characterize and compare events that occurred under very different conditions. This
work suggests new approaches to modeling, monitoring, forecasting, and evaluating drought impacts on agri-
culture, as well as evaluating technological changes to inform adaptation strategies for future climate change
and extreme events.

1. Introduction

Drought and heat events accounted for 12% of all billion-dollar US
disasters from 1980 to 2011, but almost 25% of total monetary damages
(FEMA, 1995; NCDC, 2012; Smith and Katz, 2013). The 1988 US
drought is estimated to have cost the country $40 billion ($79 billion in
2013 dollars), behind only Hurricane Katrina in 2005 ($149 billion
2013 dollars) as the most costly US weather-related disaster (NCDC,
2012; Riebsame et al., 1991). Warming temperatures and shifting
precipitation patterns may increase the frequency and severity of large-
scale droughts in important agricultural regions (Sheffield and Wood,
2008; Solomon, 2007; Wehner et al., 2011). Recent work suggests that
extended drought will harm more people in the future than any other
climate-related impact, specifically in the area of food security (Romm,
2011).

Almost 40% (about $30 billion adjusted for inflation) of the cost of

the 1988 drought is estimated to have come from direct losses to
agricultural production (Smith and Katz, 2013). Preliminary estimates
for the cost of the 2012 US drought based on direct crop losses alone are
almost $30 billion (NCDC, 2012), and direct losses to livestock and
dairy likely added another $5 billion. Once full direct and indirect es-
timates are available, 2012 is expected to rival or even surpass 1988 in
terms of economic consequences.

For decades, agricultural scientists have developed models for
evaluating the effects of weather on crops and productivity at the farm
scale (e.g., DSSAT Jones et al., 2003, EPIC Williams et al., 1995, and
APSIM McCown et al., 1996). These process-based models of crop
growth and development can provide insight into the impacts of
drought and other plant stressors (Porter and Semenov, 2005; Semenov
and Porter, 1995). In the last decade, researchers have extended these
tools to evaluate productivity at regional and global scales (Elliott et al.,
2013, 2014b; Glotter et al., 2014; Izaurralde et al., 2006; Nelson et al.,
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2009) and applied them in multi-decadal multi-model assessments of
climate change impacts (Rosenzweig et al., 2014). CERES-Maize (the
primary maize model used in DSSAT and in this study) has been applied
with two different ET estimation methods to reproduce the results of a
field trial in Colorado. The model was found to be able to reproduce ET,
grain yield, biomass, and soil moisture under various levels or irrigation
in a semi-arid region (Anothai et al., 2013). At large scales, the effect of
the number of rainy days in highly water limited settings has been
considered in the context comparison of different gridded historical
climate data products (Glotter et al., 2014). Large-scale extreme
drought was recently evaluated using similar models and data to those
used here, in the context of the possiblity of a new “Dust Bowl” type
event in the early 21st century (Glotter and Elliott, 2016).

This study investigates (i) whether crop models can reproduce the
observed impacts of past extreme events on agricultural production at
various scales; (ii) to what extent they can reliably predict the impacts
of forecasted or emerging meteorological events to improve lead times
for response planning; (iii) to what extent changes in farm technology
and management over decadal time-scales can affect system-level sen-
sitivity to climate extremes; and (iv) how data and models can be used
to improve assessments of the economic impacts of agricultural drought
and comparisons of drought events separated by decades. US maize
production over the last several decades provides the context for ex-
ploring these questions because of the meteorological intensity of re-
cent droughts across the US Corn Belt states, documented technological
and management changes in the sector over this period, and the quality
and quantity of long time-series weather- and crop-related data.

2. Material and methods

2.1. Model assumptions and parameterizations

We simulate maize growth and yield using the field-scale CERES-
Maize model, part of the Decision Support System for Agrotechnology
Transfer (DSSAT Jones et al., 2003; Hoogenboom et al., 2010 for latest
DSSAT release), at 10 km resolution for the conterminous US using the
parallel System for Integrating Impact Models and Sectors (pSIMS
Elliott et al., 2014b). The model is used in three distinct modes of study.
To investigate our ability to reproduce past events, we performed
hindcasts of 1979–2011 maize yields. To investigate our ability to
predict the impacts of emerging meteorological events, we simulated
2012 US maize production before official statistics were released in
February 2013 (Elliott et al., 2013). To investigate the effect of changes
in agricultural technologies on the system-level drought sensitivity of
commercial maize production, we analyzed the 1988 and 2012
droughts using historical counterfactuals (1988 weather with 2012
technology and practices, and vice versa). In all modes we evaluated
the ability of the crop model system to reproduce observed drought
impacts at various scales by comparing simulated yields with USDA
NASS survey data at state and national levels. In so doing, we enhance
understanding of the validity of climate change impact assessments
based on dynamic process-based crop models (Rosenzweig et al., 2014).

Simulations for rainfed and irrigated maize were driven by weather
data up to and including November 30, 2012, considering the following
management practices and trends:

• Planting date: We simulated five distinct planting dates each year,
the dates at which 10, 30, 50, 70 and 90% of the crop were reported
to be planted based on state- and Crop Reporting District (CRD)-
level crop progress data (National Agricultural Statistics Service,
1995-2013). These outputs were equally weighted in the aggregated
results.

• Relative maturity (RM) group: To reflect the fact that seed-choice
decisions are made based on local recent environmental conditions,
the relative maturity (RM) group of the chosen cultivar is de-
termined separately in each five-year period and for each planting

date. The decision is made by estimating the optimal RM over the
preceding 5-year period using the local history of growing degree
units accumulated between the planned planting and assumed ma-
turity day.

• Planting density: Based on state level crop progress data from 1979
to 2012.

Simulations also include genetic yield improvement trends para-
meterized based on literature and on discussions with academic and
industry experts in modeling and breeding:

• Kernel number was increased linearly by 9% over the simulation
period from 1979 to 2012 (Echarte et al., 2013) and

• Radiation use efficiency was increased linearly by 10% over the
simulation period. This increase was estimated through discussions
with breeders and crop experts to represent the fact that more recent
maize hybrids have stay-green characteristics (which increase late
season dry matter accumulation, i.e. RUE) and also have more up-
right leaves allowing for higher plant population without reduced
per-plant RUE (upright leaf angle would thus increase average RUE)
(Tollenaar and Lee, 2006). CERES-Maize does not facilitate direct
modeling of stay-green or upright leaf angle, so RUE increases were
used to mimic these factors.

Finally we considered two land-use change adaptations in post
processing (both calibrated with NASS data):

• Amount of cultivated corn area in each county from 1979 to 2012
and

• Fraction of that area that is irrigated vs. rainfed.

Simulations were run with input data at a variety of spatial and
temporal scales including:

• Daily time-series of key weather variables spanning January 1, 1979
to November 30, 2012, from the North American Regional
Reanalysis (Mesinger et al., 2006);

• Soil profile parameters (including most notably the average soil
textures, bulk density, organic carbon content, and water holding
characteristics at various depth layers along with the surface drai-
nage and runoff characteristics) were estimated from the
Harmonized World Soils Database (Nachtergaele et al., 2008);

• Observed planting and maturity dates and planting densities from
the USDA crop progress reports released weekly during the growing
season for many decades, generally at the resolution of states or
CRDs (National Agricultural Statistics Service, 1995-2013),

• County-level data from 1979 to 2011 on irrigated and rainfed har-
vested areas from USDA NASS; and

• Estimates of sub-county distribution of land and management
practices from the Spatial Production and Allocation Model (SPAM)
dataset (You and Wood, 2006).

CERES-Maize does not include dynamic functions for pests, disease,
or ozone damage. For nutrient stresses, we consider here only nitrogen
stress and thus nitrogen fertilizers, ignoring phosphorus and potassium.
Since maize in the US is almost uniformly grown with high levels of
fertilizers, we do not expect that nutrient limitations are a large factor.

2.2. Aggregation, statistical correction, and validation

We aggregate raw simulation output to the county level and com-
pare against survey data from USDA NASS (with linear trends removed)
to correct statistical biases and estimate forecast errors. Despite the fact
that we include time-varying technology and management factors that
reproduce a significant portion of the trend in yields, the goal in con-
sidering these empirical and semi-empirical technology and
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