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a b s t r a c t 

Comparing DNA and protein sequence groups plays an important role in biological evolutionary relation- 

ship research. Despite many methods available for sequence comparison, only a few can be used for group 

comparison. In this study, we propose a novel approach using convex hulls. We use statistical information 

contained within the sequences to represent each sequence as a point in high dimensional space. We find 

that the points belonging to one biological group are located in a different region of space than points 

belonging to other biological groups. To be more precise, the convex hull of the points from one group 

are disjoint from the convex hulls of points from other groups. This finding allows us to do phyloge- 

netic analysis for groups in an efficient way. Five different theorems are presented for checking whether 

two convex hulls intersect or are disjoint. Test results for datasets related to HRV, HPV, Ebolavirus, PKC 

and protein phosphatase domains demonstrate that our method performs well and provides a new tool 

for studying group phylogeny. More significantly, the convex analysis presents a new way to search for 

sequences belonging to a biological group by examining points within the group’s convex hull. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Evolutionary and phylogenetic analysis of DNA and protein 

groups is a basic task that has been studied in biology for years. 

It is important to understand the natural relationships between 

groups, such as families, species, or different biological types. 

Many approaches have been proposed for sequence comparison 

in the past few decades ( Elloumi, 1998; Kantorovitz et al., 2007; 

Campello and Hruschka, 2009; Sims et al., 2009; Povolotskaya 

and Kondrashov, 2010 ), but only a few can be applied to the 

phylogenetic analysis of groups. Traditionally, most comparison 

methods are based on multiple alignment, by using dynamic 

programming techniques to identify the globally optimal align- 

ment solution ( Altschul et al., 1997 ). Unfortunately, multiple 

alignment is an NP-hard problem, which means in practice that 

the implementations of these algorithms run slowly and use large 

amounts of memory. Furthermore, it can’t be used to compare 

groups. Recently, alignment-free approaches based on features 

descriptor or statistical properties of the sequences have attracted 

more and more attention. For example, to avoid complete loss of 

sequence pattern, the PseKNC and PseAAC methods are developed 

to reflect the core and essential features that are deeply hidden 
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in sequences ( Lin et al., 2014; Jia et al., 2016 ). These methods are 

used to cluster sequences and predict their various attributes. The 

graphical representation ( Yau et al., 20 03 , 20 08; Yu et al., 2010 ), 

the k-mer methods ( Vinga and Almeida, 2003 ) and the natural 

vector methods ( Deng et al., 2011; Yu et al., 2013; Zhao et al., 

2016 ) provide different ways to represent sequences as points in 

high dimensional space according to their statistical characteris- 

tics. Metrics such as the Hausdorff distance ( Huttenlocher et al., 

1993; Chew et al., 1997; Yu et al., 2014; Tian et al., 2015; Zhao 

et al., 2017 ) are used for measuring the similarity between point 

sets representing the corresponding sequence groups. Note that 

calculating the Hausdorff distance matrix requires considerable 

CPU time and memory as the size of the groups increases. 

In this study, we establish a new approach for performing evo- 

lutionary and phylogenetic analysis of biological sequence groups 

using convex hulls. Based on the natural vector method originated 

by Deng et al. (2011) , each sequence is converted into a vector. The 

vector contains the occurrence frequencies, the average positions 

and the central moments of the four nucleotides or twenty amino 

acids. If the convex hulls of any two groups do not intersect, we 

know that the two groups are located in different regions of high 

dimensional space. A central vector in each group is chosen to rep- 

resent the spatial position of the group. 

Then the question remains how to determine whether two con- 

vex hulls constructed by two finite point sets intersect or not. Let 

A = { a 1 , a 2 , · · · , a n } , B = { b 1 , b 2 , · · · , b m 

} be two finite point sets in 
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R k . Assume S is the convex hull function. The problem is to deter- 

mine whether the two convex hulls S(A) and S(B) have intersec- 

tion. Although researchers have focused on this problem for years, 

the complexity of the known algorithms is high when the dimen- 

sion k of the space is large. In the Materials and Methods section, 

we present five theorems for solving this problem. The proofs of 

all these methods could be found in the Supplement materials. 

To validate the advantage of approach, in the Results and dis- 

cussion section, we test it on several biological sequence datasets 

and compare it with the Hausdorff method. The phylogenetic trees 

show that our method give results that conform better to accepted 

evolutionary and phylogenetic analysis. The high bootstrap val- 

ues and high accuracy indicate the efficiency of our new convex 

analysis approach. We also present several graphs generated using 

our method to easily visualize the convex hulls of different group 

datasets. 

2. Materials and methods 

2.1. Natural vector method 

Let S = ( s 1 , s 2 , s 3 , · · · , s n ) be a DNA sequence of length n , that 

is, s i ∈ { A, C, G, T } , i = 1 , 2 , 3 , · · · n . For each of the 4 nucleotides 

k , define 

w k (·) : { A, C, G, T } → { 0 , 1 } 
such that w k ( s i ) = 1 if s i = k and w k ( s i ) = 0 otherwise. 

(1) Let n k = 

∑ n 
i =1 w k ( s i ) be the number of nucleotide k in the 

DNA sequence S . 

(2) Let s [ k ][ i ] = i · w k ( s i ) be the distance from the first nucleotide 

(regarded as origin) to the i th nucleotide k in the DNA se- 

quence. 

(3) Let T k = 

∑ n k 
i =1 

s [ k ][ i ] be the total distance of each set of the 4 

nucleotides. 

(4) We then take μk = T k / n k as the mean position of the nu- 

cleotide k . 

(5) Finally, we define the second-order normalized central mo- 

ments as follows: 

D 

k 
2 = 

n k ∑ 

i =1 

(
s [ k ] [ i ] − μk 

)2 

n k n 

. 

Then the natural vector of the DNA sequence S is given as fol- 

lows: 

( n A , μA , D 

A 
2 , n C , μC , D 

C 
2 , n G , μG , D 

G 
2 , n T , μT , D 

T 
2 ) . 

Similarly, protein sequence could be represented by 60- 

dimension natural vector using the same definition. 

Given a biological group G with N sequences, we can obtain a 

set containing N points A = { a 1 , a 2 , · · · , a N } corresponding to these 

sequences based on the above natural vector method. Let a 0 = ∑ N 
i =1 a i /N be the center point of group G . Then the difference be- 

tween two groups is defined as the Euclidean distance of their cen- 

ter points. The phylogenetic tree is constructed by the distance ma- 

trix using UPGMA algorithm. 

In the next part of this section, we introduce five different 

methods to check whether two convex hulls intersect or not in 

high dimensional space. The details of the proofs could be found 

in the Supplement materials. 

2.2. Projection-line method 

Let A = { a 1 , a 2 , · · · , a n } , B = { b 1 , b 2 , · · · , b m 

} be two finite point 

sets in R k . Assume S is the convex hull function. Then S(A ) ∩ S(B ) = 

∅ is equivalent with that there is a line l ⊂R k , for the projection sets 

P ( A ), P ( B ) of A, B in l , s.t. S( P ( A ) ) ∩ S( P ( B ) ) = ∅ . 

This means that if we can find any line such that the two seg- 

ments of the projection sets P ( A ) and P ( B ) are disjoint, then the 

convex hulls of the original point sets A and B have no intersec- 

tion. The computation is greatly reduced since we transform the 

problem from k -dimensional to one-dimensional. 

2.3. Normal vector method 

Let A = { a 1 , a 2 , · · · , a n } , B = { b 1 , b 2 , · · · , b m 

} be two finite point 

sets in R k . Assume S is the convex hull function. Then the neces- 

sary and sufficient condition of S(A ) ∩ S(B ) = ∅ is that there is a 

normal vector N of one hyperplane of S ( A ) and S ( B ), for the projec- 

tion sets P ( A ), P ( B ) of A, B in line N , s.t. S( P ( A ) ) ∩ S( P ( B ) ) = ∅ . 
This theorem could give confirmatory result after checking all 

the possible normal vectors since the number of normal vectors 

for any convex hull is finite. One can treat this method as a special 

case of the first theorem with given position of projection-line. 

2.4. Subset determination method 

Let A = { a 1 , a 2 , · · · , a n } , B = { b 1 , b 2 , · · · , b m 

} be two finite point 

sets in R k . Assume S is the convex hull function. Then the nec- 

essary and sufficient condition of S(A ) ∩ S(B ) = ∅ is that for all 

the possible integers i 1 , i 2 , . . . , i k +1 ∈ [ 1 , n ] and j 1 , j 2 , . . . , j k +1 ∈ 

[ 1 , m ] , S( { a i 1 , a i 2 , . . . , a i k +1 
} ) ∩ S( { b j 1 , b j 2 , . . . , b j k +1 

} ) = ∅ . 
According to this method, we can divide each convex hull 

into several convex blocks constructed by k + 1 points and check 

whether these small blocks have intersection. In k -dimensional 

space, each of the convex block is composed of k + 1 vertices and 

k + 1 faces with any possible k vertices. The equations of each k + 1 

faces and corresponding normal vectors of the convex block can be 

easily computed. It helps us to determine whether each pair of this 

kind of small blocks are disjoint or not based on the normal vector 

method in a simple way. Therefore, the computation is also signif- 

icantly reduced. 

2.5. Linear programming method 

Let A = { a 1 , a 2 , · · · , a n } , B = { b 1 , b 2 , · · · , b m 

} be two finite point 

sets in R k . Assume S is the convex hull function. Then S(A ) ∩ 

S(B ) = ∅ is equivalent with that there are no nonnegative real 

numbers λ1 , λ2 , . . . , λn , μ1 , μ2 , . . . , μm 

s.t. 
∑ n 

i =1 λi a i = ∑ m 

j=1 μ j b j and 

∑ n 
i =1 λi = 

∑ m 

j=1 μ j = 1 . 

We can transform the original problem into an algebra problem 

by this theorem. If any convex combination of the points in one set 

equals to that of points in the other set, we then confirm that the 

two hulls have intersection. No matter how large the dimension of 

the space is and how many the points are, we can always solve 

this problem easily by the linear programming function in many 

kinds of software. It is a very timesaving and effective method. 

2.6. Minimum distance method 

Let A = { a 1 , a 2 , · · · , a n } , B = { b 1 , b 2 , · · · , b m 

} be two finite point 

sets in R k . Assume S is the convex hull function. For nonnegative 

real numbers λ1 , λ2 , . . . , λn , μ1 , μ2 , . . . , μm 

satisfy 
∑ n 

i =1 λi = ∑ m 

j=1 μ j = 1 , and Let D = in f | ∑ n 
i =1 λi a i −

∑ m 

j=1 μ j b j | . Then the 

necessary and sufficient condition of S(A ) ∩ S(B ) = ∅ is that D > 0. 

Here we translate the problem to another algebra question 

about calculating the minimum distance of the two convex hulls. 

They are disjoint if and only if the minimum distance is positive. 

Many mathematical software could easily solve this minimization 

problem with quadratic programming functions. 
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