
Journal of Theoretical Biology 455 (2018) 75–85 

Contents lists available at ScienceDirect 

Journal of Theoretical Biology 

journal homepage: www.elsevier.com/locate/jtbi 

Vaccination threshold size and backward bifurcation of SIR model 

with state-dependent pulse control 

Qianqian Zhang 

a , Biao Tang 

b , Sanyi Tang 

a , ∗

a School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, PR China 
b Laboratory for Industrial and Applied Mathematics, York University, Toronto, Ontario M3J 1P3, Canada 

a r t i c l e i n f o 

Article history: 

Received 6 April 2018 

Revised 5 July 2018 

Accepted 9 July 2018 

Available online 11 July 2018 

Keywords: 

State-dependent pulse SIR model 

Semi-trivial periodic solution 

Global stability 

Transcritical and pitchfork bifurcation 

Backward bifurcation 

a b s t r a c t 

Depending on the potential susceptible human size, we consider the state-dependent integrated infec- 

tious disease control strategies including vaccination, isolation and treatment. Correspondingly, we pro- 

pose a state-dependent pulse SIR model, in which whether the control measures implemented or not 

depends on the threshold size of susceptible population. By defining the Poincaré map, we first inves- 

tigate the existence and global stability of the semi-trivial (or disease free) periodic solution, and the 

threshold condition is proposed. Further, by employing bifurcation theories of the one-parameter family 

of maps related to the Poincaré map, we then focus on the bifurcation with respect to the key parame- 

ters. The main results reveal that backward bifurcation via transcritical bifurcation or pitchfork bifurcation 

can occur for all the interesting parameters including isolation rate, vaccination rate, threshold susceptible 

population size and birth rate. The complex relationships between the basic reproduction number of clas- 

sical SIR model and the threshold condition of the model with state-dependent pulse control depict that 

the control strategies related to the four parameters should be carefully designed, otherwise the para- 

doxical effects could occur and the gains cannot make up for losses. For example, too small vaccination 

rate will result in an increasing of threshold condition and the number of infected population. Therefore, 

our results suggest that when the state-dependent feedback control strategy is implemented for infec- 

tious disease control, the effective and optimal control program should take the population dynamics, 

the threshold susceptible population size, vaccination and isolation or treatment rate into consideration. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Infectious disease remains a key healthy issue for humans, 

and it has a significant impact on social stability and economic 

development. Mathematical analysis and modelling, as an impor- 

tant part of infectious disease epidemiology, has been central to 

infectious disease epidemiology since its inception as a discipline 

more than a century ago ( Dietz and Heesterbeek, 2002; Grassly 

and Fraser, 2008 ). In the literatures of modelling infectious disease, 

the classical SIR model is usually used to describe the transmission 

dynamics of infectious diseases among humans, which gives: ⎧ ⎪ ⎨ 

⎪ ⎩ 

dS(t) 
dt 

= � − βSI − δS, 

dI(t) 
dt 

= βSI − γ I − δI, 

dR (t) 
dt 

= γ I − δR, 

(1) 
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where S ( t ), I ( t ) and R ( t ) represent the population densities of 

susceptible, infected and recovered humans at time t , respectively. 

Here, � is the constant recruitment rate, δ denotes the death rate, 

β represents the transmission rate, and γ is the recovery rate. 

Due to the recovered humans R ( t ) cannot be infected again, 

the dynamics of system (1) are determined by the following 

equations: { 

dS(t) 
dt 

= � − βSI − δS, 

dI(t) 
dt 

= βSI − γ I − δI. 
(2) 

Vaccination is one of the main methods to control the spread of 

infectious diseases, which has proved a powerful defence against a 

range of infectious diseases of humans and animals ( Keeling et al., 

2003 ). However, it becomes very complicated to find an optimal 

vaccination strategy if we compare the costs, outcomes, and 

cost-effectiveness of a vaccination program with no interven- 

tion. Many researchers have tried to investigate the transmission 

dynamics of infectious diseases under the control program of 

vaccination through mathematical modelling ( Grassly and Fraser, 

20 08; Smith et al., 20 06 ). Some of them assumed that vaccination 
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is done continuously with continuous models being considered 

( Ferguson et al., 2005; Kribs-Zaleta and Velasco-Hernández, 20 0 0 ), 

many others assumed that vaccination is carried out at the fix 

moments with impulsive models being proposed ( Agur et al., 

1993; D’Onofrio, 2002; Mailleret and Lemesle, 2009; Shulgin et al., 

1998; Smith and Schwartz, 2008; Yang and Xiao, 2012; Yang 

et al., 2013 ). However, either the continuous vaccination or the 

pulse vaccination with fixed time period ignored the prevalence 

of the infectious disease and the potential size of susceptible 

humans. Therefore, taking costs, outcomes, and cost-effectiveness 

into consideration, it is more reasonable to assume that whether 

vaccinate the susceptible humans or not, depends on the size 

of the infected humans or susceptible humans. Correspondingly, 

the state-dependent pulse model should be proposed ( Bainov 

and Simeonov, 1993; Simeonov and Bainov, 1989 ). Actually, the 

state-dependent impulsive model has been applied to many areas, 

including integrated pest management ( Tang and Cheke, 2005; 

2008; Tang and Pang, 2017; Tang et al., 2015b; 2015a ), comprehen- 

sive tumor treatment ( Panetta, 1996; 1998 ), and neuron systems 

( Touboul and Brette, 2009 ). 

In this study, we assume that, if the number of susceptible 

population is below a critical size S v , we do not carry out any con- 

trol strategy. However, once the susceptible population reaches the 

critical size S v , the integrated interventions including vaccination 

and isolation (or treatment) are carried out immediately. Thus, 

based on model (2) , we propose the following state-dependent 

feedback control SIR model: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS(t) 

dt 
= � − βSI − δS 

. = F 1 (S, I) , 

dI(t) 

dt 
= βSI − γ I − δI 

. = F 2 (S, I) , 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

S(t) < S v , 

S(t + ) = (1 − p) S(t) , 

I(t + ) = (1 − q ) I(t) , 

} 

S(t) = S v . 

(3) 

Here, p ∈ [0, 1] and q ∈ [0, 1] denote the vaccination rate of sus- 

ceptible humans and the isolation (or treatment) rate ratio of the 

infected humans, respectively. 

The main purpose of this study is to investigate the dynamics 

of the proposed model, and examine the efficacy of this integrated 

regime for controlling the spread of the infectious disease. The 

rest part of the paper is organised as follows. In Section 2 , we 

first give the basic definitions of the state-dependent impulsive 

model and some Lemmas on the stability of the semi-trivial (or 

disease free) periodic solution (STPS). In Section 3 , we define the 

Poincaré map and analyze its main properties. In Section 4 , we 

investigate the existence and global stability of the STPS (i.e., dis- 

ease free periodic solution), and provide the threshold condition. 

In Section 5 , the transcritical and pitchfork bifurcation bifurcations 

have been investigated with respect to four interesting parameters, 

and then the occurrence of backward bifurcations ( Gumel, 2012; 

Hadeler and Van, 1997; Wang, 2006; Zhang and Liu, 2008 ) are 

discussed, which are crucial for infectious disease control. Finally, 

some important results related to the disease control and design 

of the optimal control measures are addressed in the last section. 

2. Preliminaries 

We briefly summary the necessary results used throughout this 

paper in this section. Consider the following generalized planar 

impulsive semi-dynamic system { 

dx 1 
dt 

= P (x 1 , x 2 ) , 
dx 2 
dt 

= Q(x 1 , x 2 ) , i f φ(x 1 , x 2 ) � = 0 , 

�x 1 = ᾱ(x 1 , x 2 ) , �x 2 = β̄(x 1 , x 2 ) , i f φ(x 1 , x 2 ) = 0 . 

(4) 

Here, (x 1 , x 2 ) ∈ R 2 + = { (x, y ) | x ≥ 0 , y ≥ 0 } , � x 1 = x + 
1 

− x 1 and 

� x 2 = x + 
2 

− x 2 . P, Q, ᾱ, β̄ are continuous functions from R 2 + 
into R . The impulsive function H : R 2 + → R 2 + is defined as 

H(x 1 , x 2 ) = (H 1 (x 1 , x 2 ) , H 2 (x 1 , x 2 ) 

= (x 1 + ᾱ(x 1 , x 2 ) , x 2 + β̄(x 2 , y 2 )) 

and Z + = (x + 
1 
, x + 

2 
) is called an impulsive point of Z = (x 1 , x 2 ) . 

Based on the notations and definitions presented in literatures 

( Bonotto and Federson, 2008; Kaul, 1990; 1994; Tang et al., 2015a ), 

we can define the planar impulsive semi-dynamic system and an 

order k periodic solution of model (4) . In particular, the following 

analogue of Poincaré criterion ( Simeonov and Bainov, 1989 ) can be 

used to analyze the local stability of an order- k periodic solution. 

Lemma 2.1. The T-periodic solution (x 1 , x 2 ) = (ξ (t ) , η(t )) of the 

system (4) is orbitally asymptotically stable if the Floquet multiplier 

μ2 satisfies | μ2 | < 1, where 

μ2 = 

q ∏ 

k =1 

� k exp 

[∫ T 

0 

(
∂P 

∂x 1 
(ξ (t) , η(t)) + 

∂Q 

∂x 2 
(ξ (t) , η(t)) 

)
dt 

]
with 

�k = 

P + 
(

∂ ̄β
∂x 2 

∂φ
∂x 1 

− ∂ ̄β
∂x 1 

∂φ
∂x 2 

+ 

∂φ
∂x 1 

)
+ Q + 

(
∂ ̄α
∂x 1 

∂φ
∂x 2 

− ∂ ̄α
∂x 2 

∂φ
∂x 1 

+ 

∂φ
∂x 2 

)
P ∂φ

∂x 1 
+ Q 

∂φ
∂x 2 

and P, Q, ∂ ̄α
∂x 1 

, ∂ ̄α
∂x 2 

, 
∂ ̄β
∂x 1 

, 
∂ ̄β
∂x 2 

, 
∂φ
∂x 1 

and ∂φ
∂x 2 

are calcu- 

lated at the point ( ξ ( τ k ), η( τ k )), P + = P (ξ (τ+ 
k 

) , η(τ+ 
k 

)) and Q + = 

Q(ξ (τ+ 
k 

) , η(τ+ 
k 

)) . Here φ( x 1 , x 2 ) is a sufficiently smooth function 

such that grad φ( x 1 , x 2 ) � = 0, and τ k ( k ∈ N ) is the time of the kth jump. 

In order to address the bifurcation of the Poincaré map de- 

fined by system (4) , we introduce the following two lemmas 

( Grandmont, 2008 ): 

Lemma 2.2. (Transcritical bifurcation). Let G : U × I −→ R define a 

one-parameter family of maps, where G is C r with r ≥ 2, and U, I are 

open intervals of the real line containing 0. Assume that 

G (0 , α) = 0 for all α, 
∂G 

∂x 
(0 , 0) = 1 , 

∂ 2 G 

∂ x∂ α
(0 , 0) > 0 , 

∂ 2 G 

∂x 2 
(0 , 0) > 0 . 

Then there are α1 < 0 < α2 and ε > 0 such that 

(i) If α1 < α < 0, then G α has two fixed points, 0 and x 1 α > 0 

in (−ε , ε ) . The origin is asymptotically stable, the other fixed 

point is unstable. 

(ii) If 0 < α < α2 , then G α has two fixed points, 0 and x 1 α < 0 in 

(−ε , ε ) . The origin is unstable, the other fixed point is asymp- 

totically stable. 

Note that the case ∂ 2 G 
∂ x∂ α

(0 , 0) < 0 can be handled by making 

the change of parameter α → −α, and several different cases have 

been shown in Fig. 1 . 

Lemma 2.3. (Supercritical pitchfork bifurcation). Let G : U × I → R be 

as in Lemma 2.2 , except that G is C r with r ≥ 3, ∂ 2 G 
∂x 2 

(0 , 0) = 0 and 

∂ 3 G 
∂x 3 

(0 , 0) < 0 . Then there are α1 < 0 < α2 and ε > 0 such that 

(i) If α1 < α ≤ 0, then G α has a unique fixed point, x = 0 , in 

(−ε , ε ) . It is asymptotically stable. 

(ii) If 0 < α < α2 , then G has three fixed points in (−ε , ε ) . The ori- 

gin is an unstable fixed point, the two others, x 1 α < 0 < x 2 α , are 

asymptotically stable. 

Similarly, the case ∂ 2 G 
∂ x∂ α

(0 , 0) < 0 can be handled by making the 

change of parameter α → −α and several different cases including 

subcritical pitchfork bifurcation have been shown in Fig. 2 . 
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