
Journal of Theoretical Biology 454 (2018) 70–79 

Contents lists available at ScienceDirect 

Journal of Theoretical Biology 

journal homepage: www.elsevier.com/locate/jtbi 

A Bayesian statistical analysis of stochastic phenotypic plasticity 

model of cancer cells 

Da Zhou 

a , Shanjun Mao 

b , Jing Cheng 

c , Kaiyi Chen 

a , Xiaofang Cao 

a , Jie Hu 

a , ∗

a School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China 
b Department of Statistics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 
c School of Statistics, Huaqiao University, Xiamen 361005, PR China 

a r t i c l e i n f o 

Article history: 

Received 4 December 2017 

Revised 25 May 2018 

Accepted 28 May 2018 

Available online 29 May 2018 

Keywords: 

Bayesian statistics 

Model selection 

Phenotypic plasticity 

Cancer model 

a b s t r a c t 

The phenotypic plasticity of cancer cells has received special attention in recent years. Even though re- 

lated models have been widely studied in terms of mathematical properties, a thorough statistical analy- 

sis on parameter estimation and model selection is still very lacking. In this study, we present a Bayesian 

approach which is devised to deal with the data sets containing both mean and variance information 

of relative frequencies of cancer stem cells (CSCs). Both Gibbs sampling and Metropolis-Hastings (MH) 

algorithm are used to perform point and interval estimations of cell-state transition rates between CSCs 

and non-CSCs. Extensive simulations demonstrate the validity of our model and algorithm. By applying 

this method to a published data on SW620 colon cancer cell line, the model selection favors the phe- 

notypic plasticity model, relative to conventional hierarchical model of cancer cells. Further quantitative 

analysis shows that, in the presence of phenotypic equilibrium, the variance data greatly influences the 

time-variant pattern of the parameters. Moreover, it is found that the occurrence of self-renewal of CSCs 

shows a strong negative correlation with de-differentiation rate from non-CSCs to CSCs, suggesting a bal- 

ancing mechanism in the heterogenous population of cancer cells. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The hypothesis of cancer stem cell theory ( Jordan et al., 2006; 

Reya et al., 2001 ) postulates a hierarchical organization of can- 

cer cells. A small number of tumorigenic cancer cells, also termed 

cancer stem cells (CSCs), reside at the apex of this cellular hi- 

erarchy ( Dalerba et al., 2007 ). CSCs are capable of self-renewal 

and generating more differentiated cancer cells with lower tu- 

morigenic potential. However, growing researches have extended 

the CSC model by proposing a phenotypic plasticity paradigm in 

which reversible transitions could happen between CSCs and non- 

CSCs ( Marjanovic et al., 2013 ). That is, not only can CSCs give rise 

to non-CSCs, but a fraction of non-CSCs can reacquire CSC-like 

characteristics. This de-differentiation from non-CSCs to CSCs has 

been reported in quite a few types of cancers, such as breast can- 

cer ( Chaffer et al., 2013; Gupta et al., 2011; Meyer et al., 2009 ), 

melanoma ( Quintana et al., 2010 ), colon cancer ( Yang et al., 2012 ), 

and glioblastoma multiforme ( Fessler et al., 2015 ). 

Very recently special attention has been paid to reasonable 

mathematical models for quantifying the process of phenotypic 
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plasticity. In particular, it was found that the phenotypic plasticity 

plays an important role in the stability of the quantitative mod- 

els ( Gupta et al., 2011; Niu et al., 2015; dos Santos and Silva, 

2013a, 2013b; Wang et al., 2014; Zhou et al., 2014a, 2014b ). That 

is, the phenotypic plasticity greatly contributes to stabilizing the 

phenotypic mixture of cancer cells (termed phenotypic equilibrium ), 

thereby effectively maintaining the heterogeneity of cancer cell 

populations. Some other researches laid emphasis on the role of 

the phenotypic plasticity in transient dynamics. It was shown that 

an interesting overshoot phenomenon of CSCs observed in experi- 

ment can be well explained by de-differentiation from non-CSCs to 

CSCs ( Chen et al., 2016; Sellerio et al., 2015 ). Besides, Leder et al. 

studied mathematical models of pdgf-driven glioblastoma and re- 

vealed that the effectiveness of radiotherapy is quite sensitive to 

the capability of de-differentiation from differentiated sensitive 

cells to stem-like resistant cells ( Leder et al., 2014 ); Jilkine and 

Gutenkunst studied the effect of de-differentiation on time to mu- 

tation acquisition in cancers ( Jilkine et al., 2014 ); Chen et al. stud- 

ied transition model between endocrine therapy responsive and re- 

sistant states in breast cancer by Landscape Theory ( Chen et al., 

2014 ); Dhawan et al. showed with mathematical modeling that 

exposure to hypoxia enhanced the plasticity and heterogeneity of 

cancer cell populations ( Dhawan et al., 2016 ); Tonekaboi et al. in- 
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vestigated how cellular plasticity behaves differently in small and 

large cancer cell populations ( Tonekaboni et al., 2017 ). A recent 

review by Jolly et al. (2017) focused on quantitative models of 

Epithelial-mesenchymal plasticity in cancer. 

Even though the phenotypic plasticity has been extensively 

studied in terms of mathematical properties, the statistical anal- 

ysis on parameter estimation and model selection is still very lack- 

ing. Actually, one of the crucial tasks in the research of pheno- 

typic plasticity is to estimate the transition rates between different 

cell types. As a pioneering work, Gupta et al. (2011) established 

a discrete-time Markov state transition model and estimated the 

transition probabilities between different cell states by fitting the 

model to their FACS (Fluorescence-activated cell sorting) data on 

SUM159 and SUM149 breast cancer cell lines. Besides, continuous- 

time ordinary differential equations (ODEs) models were also de- 

veloped ( Wang et al., 2014; Zhou et al., 2014a ), based on which de- 

differentiation rates were estimated by fitting to SW620 colon can- 

cer cell line. However, the above mentioned works can only pro- 

vide point estimations to the interested parameters, but not inter- 

val estimations. Comparatively, interval estimation is much more 

informative and frequently-used than point estimation in practice. 

For doing interval estimation, statistical modeling rather than de- 

terministic modeling should be applied. Moreover, the time-variant 

pattern of the parameters for phenotypic plasticity is seldom inves- 

tigated. In previous works, the parameters are normally treated as 

constants. However, it is more likely that the parameters are vari- 

ables changing with environment, thus developing effective meth- 

ods to explore the variability of the parameters should be inter- 

esting. Besides, an even more important issue is the model valida- 

tion of phenotypic plasticity. Even though increasing evidence sup- 

ports the paradigm of phenotypic plasticity, it is still questionable 

if this mechanism is a crucial improvement to the cellular hierar- 

chy of cancer cells or just a minor extension to it. In other words, 

it is quite important to see if it is statistically significant when us- 

ing different models with and without phenotypic plasticity to the 

validation data sets. Therefore, a thorough statistical analysis is of 

great value for further quantifying the biological process of pheno- 

typic plasticity and exploring its biological significance. 

In this research, a statistical framework is presented to analyze 

a two-phenotypic model of cancer cells. In this model, each cancer 

cell is either CSC phenotypic state or non-CSC phenotypic state. 

Both types of cells can divide symmetrically or asymmetrically 

with certain probabilities. A Bayesian approach ( Hoff, 2009 ) is de- 

veloped to deal with experimental data sets containing both mean 

and variance values of relative frequencies of cancer stem cells. 

Standard MCMC methods (such as Gibbs sampling ( Geman and Ge- 

man, 1987 ) and MH algorithm ( Hastings, 1970; Metropolis et al., 

1953 )) are used to perform statistical inference with Multivari- 

ate Potential Scale Reduction Factor (MPSRF) ( Brooks and Gel- 

man, 1998; Gelman and Rubin, 1992 ) checking the convergence 

of MCMC chains. Our simulation results demonstrate the precision 

and accuracy of our algorithm by both point estimation and in- 

terval estimation. By applying our approach to a published data 

on SW620 colon cancer cell line ( Yang et al., 2012 ), we also 

perform model selection via deviance information criterion (DIC; 

Gelman et al., 2003 ). Our result shows that the phenotypic plas- 

ticity model with de-differentiation has superior quality relative 

to the hierarchical model without de-differentiation. Moreover, we 

provide a further quantitative analysis to the time-variant pattern 

of the parameters of the model. In the presence of the pheno- 

typic equilibrium, i.e. the mean values of relative frequencies of 

CSCs tending to a steady value, the time-variant pattern is greatly 

influenced by the variance data. By using our model selection 

procedure, the favored model shows a strong negative correla- 

tion between symmetric division probability of CSCs and asymmet- 

ric division probability of non-CSCs. This result suggests an inter- 

esting balance mechanism between self-renewal of CSCs and de- 

differentiation of non-CSCs. 

The paper is organized as follows. The model assumptions and 

Bayesian framework are presented in Section 2 . Main results in- 

cluding simulations and real data analysis are shown in Section 3 . 

Conclusions are presented in Section 4 . 

2. Methods 

2.1. Model assumptions 

In this section we describe the model assumptions. Note that 

the salient feature of the phenotypic plasticity model is the re- 

versibility between CSCs and non-CSCs, i.e., not only can CSCs dif- 

ferentiate into non-CSCs, but non-CSCs are also capable of de- 

differentiating into CSCs. Consider a population of cancer cells 

comprising two phenotypes: CSC represents cancer stem cell phe- 

notypic state, non-CSC represents non-stem cancer cell phenotypic 

state. Even though this two-phenotypic assumption simplifies the 

biological complexity of highly diverse phenotypes in cancer, the 

two-phenotypic setting has been proved as an effective and rea- 

sonable simplification for highlighting the minimal process of phe- 

notypic plasticity ( Leder et al., 2014; dos Santos and Silva, 2013a, 

2013b; Wang et al., 2014 ). Similar bidirectional transition cascade 

models were also studied in bacterial community ( Mao et al., 2015; 

Pei et al., 2015 ). 

We now present the cellular process of the two-phenotypic 

model. From probabilistic point of view, this model can be seen as 

a discrete-time two-type branching process ( Haccou et al., 2005 ). 

Each cell lives for a fixed time (suppose one unit of time). At the 

moment of death it gives birth to two daughter cells. More specifi- 

cally, for each CSC, it gives birth to two identical CSC daughter cells 

with probability α (symmetric division), otherwise (with probabil- 

ity 1 − α) it gives birth to one CSC daughter cell and one non- 

CSC daughter cell (asymmetric division). For each non-CSC, it di- 

vides symmetrically into two non-CSC daughter cells with proba- 

bility 1 − β, whereas it divides asymmetrically into one non-CSC 

daughter cell and one CSC daughter cell with probability β (de- 

differentiation). The model will reduce to conventional hierarchi- 

cal model if letting β = 0 , i.e. de-differentiation is not allowed to 

happen. Hence the model selection with respect to β provides an 

efficient way to evaluate the significance of phenotypic plasticity. 

It should be pointed out that, α and β may not be constant, so it 

is interesting to see whether the parameters are time-varying and 

how to quantify the time-variant pattern of them. 

The statistical inference of branching processes has been stud- 

ied for a long time ( Guttorp, 1991 ). The usage of statistical meth- 

ods strongly depends on the data types available. Normally, the ob- 

servation of the whole genealogy tree generated from underlying 

process is quite difficult to obtain (except in very limited exper- 

iments ( Hu et al., 2015 )). More often, only the absolute numbers 

or relative frequencies of distinct cell types are recorded at given 

moment, and it is even easier to collect relative frequencies than 

absolute numbers of given cell types ( Yakovlev and Yanev, 2009 ). 

Thus developing statistical approaches for proportion data has a 

wider range of application. In this work our proposed method is 

used for the time-series data on relative frequencies of CSC pheno- 

typic state. 

Let x A ( t ) be the frequency of CSC state at time t, μt be the ex- 

pectation of x A ( t ), i.e. μt = E (x A (t)) , and σ 2 
t be the variance of 

x A ( t ), i.e. σ 2 
t = Var (x A (t)) . Then we can obtain two important re- 

currence formulas as follows (see Appendix A for more details): 

μt+1 = 

1 + α − β

2 

μt + 

β

2 

, (1) 
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