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a b s t r a c t 

For the pairwise interactions, the evolution of individual behavior should involve two major factors: one 

is what you will do in an interaction with a given opponent, and another is what type of opponents you 

prefer to interact with. In this study, we developed a two-phenotype iterated bimatrix replicator dynam- 

ics model based on individuals’ own volition, where, different from the classic iterated game model, we 

assume that ( i ) for all interaction pairs, the maximum expected interaction time is same and it is limited 

even if two individuals in an interaction pair would like to keep their interaction; and ( ii ) all individuals 

are able to unilaterally break off the interactions with their opponents according to their own volition. 

Therefore, we define that, at any time t , an interaction pair will be disbanded with a given probability 

and the new interaction pairs will be randomly formed. The main results show that: ( i ) the existence 

of locally asymmetrically stable interior equilibrium is possible; and ( ii ) the evolutionary stability of the 

system is similar to the classic asymmetric evolutionary game. These results may provide a new insight 

for revealing the evolutionary significance of asymmetric game dynamics. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

It is well known that Dawkins’ battle of the sexes is one of 

the most famous asymmetric games in evolutionary game the- 

ory ( Dawkins, 1976 ). In this model, he considered a conflict be- 

tween males and females concerning their respective shares in 

parental investment. At a fundamental level, this game is rigged 

against females by the fact that they produce relatively few, large 

gametes, whereas males produce many small gametes. Females 

are thereby much more committed and can less afford to lose a 

child. Thus males are in many cases in a better position to desert 

their female partners and children. They can invest into increas- 

ing their offspring with the help of new mates. As an imaginary 

game, Dawkins assumed that there are two phenotypes (or called 

the strategies) in female population, called “coy” and “fast”, re- 

spectively, and two phenotypes in male population, called “faith- 

ful” and “philander”, respectively. The coy females insist on a long 

courtship, whereas the fast female do not; all females care for the 

offspring they produce. The faithful males are willing, if necessary, 

∗ Corresponding authors. 

E-mail addresses: zhangby@bnu.edu.cn (B. Zhang), jiting@ioz.ac.cn (T. Ji). 
1 These two authors have the same contribution to this paper. 

to engage in a long courtship, and also care for the offspring. The 

philandering males are not prepared to engage in a long courtship, 

and do not care for their offspring. All of these descriptions and 

logical reasoning imply a cyclical character: if females are coy, it 

pays males to be faithful; if males are faithful, it pays females to 

be fast; if females are fast, it pays males to be philandering; and if 

males are philandering, it pays females to be coy ( Dawkins, 1976; 

Hofbauer and Sigmund, 1998; Maynard Smith, 1982; Schuster and 

Sigmund, 1981; Schuster et al., 1981 ). 

In order to model the battle of the sexes theoretically, assume 

that: ( i ) the successful raising of an offspring increase the fit- 

ness of both parents by G ; ( ii ) the parental investment −C will 

be entirely borne by the female if the male deserts, otherwise, 

it will be shared equally by both parents; ( iii ) a long engage- 

ment period represents a cost of −E to both partners; and ( iv ) 

0 < E < G < C < 2(G − E) ( Hofbauer and Sigmund, 1998 ). Thus, if a 

faithful male mates with a coy female, the payoff is G − C/ 2 − E

for both; if faithful male mates with a fast female, the payoff

is G − C/ 2 for both; if a philandering male encounters a coy fe- 

male, the payoff is 0 for both; and if a philandering male mates 

with a fast female, the payoffs of the male and female are G and 

G − C, respectively ( Hofbauer and Sigmund, 1998 ). The analysis of 

the asymmetric replicator dynamics (or the bimatrix replicator dy- 
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namics) shows clearly that the battle of the sexes has an inte- 

rior equilibrium (or a unique mixed Nash equilibrium), which is (
x ∗ = E/ (C − G + E) , y ∗ = C/ 2(G − E) 

)
(where x denotes the pro- 

portion (or frequency) of the phenotype “philander” in the male 

population and y the proportion of the phenotype “coy” in the 

female population), but it is unstable and all orbits are periodic 

orbits surrounding it ( Hofbauer and Sigmund, 1998; Schuster and 

Sigmund, 1981; Schuster et al., 1981 ). Although this result provides 

a possible theoretical explanation for the evolution of the battle of 

the sexes, a challenging question is whether the cyclic character 

of the battle of the sexes is really favored by natural selection? As 

stated by Maynard Smith, “I am unable to offer illustrative exam- 

ples, or evidence that such cycles occur” ( Maynard Smith, 1982 ). 

In fact, we also notice that the classic theory of replicator dy- 

namics has shown that for a two-phenotype bimatrix game dy- 

namics, if a unique interior equilibrium exists, then it must be 

unstable, or it is either saddle point or singular point ( Hofbauer 

and Sigmund, 1998; Schuster and Sigmund, 1981; Schuster et al., 

1981 ). In a standard bimatrix game, it is assumed that: ( i ) play- 

ers in different positions (for example, males and females in the 

battle of the sexes) have different strategy sets and payoff matri- 

ces, where for convenience, two positions are denoted by position 

I and position II, respectively, and two strategy sets are denoted by 

R = 

(
R 1 , R 2 , · · · , R n 

)
for position I and S = 

(
S 1 , S 2 , · · · , S m 

)
for posi- 

tion II; and ( ii ) at any time t , for each interaction pair ( R i , S j ), the 

probability that a R i -player interacts with a S j -player exactly equals 

to the frequency of S j in the II-population, and similarly, the prob- 

ability that a S j -player interacts with a R i -player is the frequency 

of R i in the I-population for all i = 1 , 2 , · · · , n and j = 1 , 2 , · · · , m . 

The second assumption strongly implies that the pairwise interac- 

tions between I-players and II-players should be uniform. However, 

this assumption may be not always true in nature. In 2006, Tay- 

lor and Nowak developed the concept of non-uniform interaction 

rates in evolutionary symmetric game dynamics, i.e. the probability 

of interaction between two individuals is not independent of their 

strategies, and they showed that the non-uniform interaction rates 

allow the coexistence of cooperation and defection in Prisoner’s 

Dilemma (PD) game ( Taylor and Nowak., 2006 ). In fact, the con- 

cept of non-uniform rates also implies that under the framework 

of evolutionary game with pairwise interactions, the evolution of 

behavior should involve two major factors: one is what you will 

do in an interaction with a given opponent, and another is what 

type of opponents you prefer to interact with. Obviously, both of 

these two factors should depend on individuals’ self-interests. Re- 

cently, an interesting experimental study shows clearly that, based 

on individual self-interest in PD game, if each player can unilat- 

erally break off the pairwise interaction with his/her opponent 

according to his/her own volition, then all individuals (including 

both cooperators and defectors) prefer a cooperator as an oppo- 

nent ( Zhang et al., 2016; Zheng et al., 2017 ). So, this simple mech- 

anism should have very important evolutionary significance in evo- 

lutionary game dynamics ( Eshel and Cavalli-Sforza, 1982; Fletcher 

and Doebeli., 2006 ). However, we here have to point out that 

the mechanism based on individuals’ own volition, proposed by 

Zhang et al. (2016) and Zheng et al. (2017) , is totally different from 

the concept of “assortative matching” ( Chaudhuri, 2011 ) since in 

their models they assumed that the population size is large enough 

(or infinite) and individuals are unable to detect the strategies of 

their opponents before they interact with their opponents. 

In this study, we will extend the basic idea in 

Zhang et al. (2016) and Zheng et al. (2017) to the bimatrix 

game dynamics. For example, according to the definitions and 

assumptions of the battle of the sexes with payoff matrices (
0 G 

G − C 
2 − E G − C 

2 

)
(for male) and 

(
0 G − C 

2 − E 

G − C G − C 
2 

)
(for 

female) ( Hofbauer and Sigmund, 1998 ), both faithful and philan- 

dering males should more prefer to mate with a fast female, and 

both coy and fast females should more prefer to mate a faithful 

male. However, our main goal is not merely limited to the conflict 

between the two sexes, but rather to consider more generally 

the effect of the individuals’ own volition on the dynamics of 

two-phenotype asymmetric game. 

2. Assumptions and model 

Consider a two-phenotype asymmetric game (or a two- 

phenotype bimatrix game) between R -individuals and S - 

individuals, where two phenotypes in R -population are denoted 

by R 1 and R 2 , respectively, and two phenotypes in S -population 

are denoted by S 1 and S 2 , respectively. The two payoff matrices 

are given by A = 

(
a 11 a 12 

a 21 a 22 

)
and B = 

(
b 11 b 12 

b 21 b 22 

)
, where b ij 

denotes the payoff of a R i -individual in unit time when it plays 

against a S j -individual for i, j = 1 , 2 , and a ji is the payoff of a 

S j -individual in unit time when it plays against a R i -individual for 

j, i = 1 , 2 ( Hofbauer and Sigmund, 1998 ). 

Furthermore, we make some basic assumptions, which are 

( i ) both R - and S -populations are large enough; ( ii ) the inter- 

action between R - and S -individuals is an iterated game (but 

it is different from the classic iterated game), where, similar to 

Zhang et al. (2016) and Zheng et al. (2017) , we assume that for all 

interaction pairs, the maximum expected interaction time (or the 

maximum number of the repeated rounds) is a same fixed con- 

stant, all individuals are able to unilaterally break off the interac- 

tions with their opponents at any time t according to their own 

volition, and the new interaction pairs are randomly formed; ( iii ) 

similar also to Zhang et al. (2016) and Zheng et al. (2017) , all indi- 

viduals are assumed to be unable to identify the strategies of their 

opponents before they interact with the opponents. Based on these 

assumptions, we define that at any time t an interaction pair be- 

tween R - and S -individuals will be disbanded with a given proba- 

bility, where this probability depends on both R -individual’s strat- 

egy and S -individual’s strategy. 

Let P ij be the frequency of interaction pair ( R i , S j ) for i, j = 1 , 2 . 

Then, the frequencies of R 1 and R 2 in the R -population, denoted by 

x and 1 − x, respectively, are given by 

x = P 11 + P 12 , 

1 − x = P 21 + P 22 , (1) 

and, similarly, the frequency of S 1 and S 2 in the S -population, de- 

noted by y and 1 − y, respectively, are given by 

y = P 11 + P 21 , 

1 − y = P 12 + P 22 . (2) 

The interaction pair ( R i , S j ) will be disbanded with probability 

φij at any time t for i, j = 1 , 2 and that the single R -individuals 

and single S -individuals will form new interaction pairs through 

the random meeting ( Taylor and Nowak., 2006 ). Let n ij denote the 

number of interaction pair ( R i , S j ) for i, j = 1 , 2 and notice that 

p = 

∑ 

j φ1 j n 1 j ∑ 

i, j φi j n i j 

(3) 

is the proportion of R 1 in the single R -group, and 

q = 

∑ 

i φi 1 n i 1 ∑ 

i, j φi j n i j 

(4) 

is the proportion of S 1 in the single S -group. Then, the change rates 

of n ij ( i, j = 1 , 2 ) because of the recombination of interaction pairs 
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