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For the pairwise interactions, the evolution of individual behavior should involve two major factors: one
is what you will do in an interaction with a given opponent, and another is what type of opponents you
prefer to interact with. In this study, we developed a two-phenotype iterated bimatrix replicator dynam-
ics model based on individuals’ own volition, where, different from the classic iterated game model, we
assume that (i) for all interaction pairs, the maximum expected interaction time is same and it is limited
even if two individuals in an interaction pair would like to keep their interaction; and (ii) all individuals
are able to unilaterally break off the interactions with their opponents according to their own volition.
Therefore, we define that, at any time ¢, an interaction pair will be disbanded with a given probability
and the new interaction pairs will be randomly formed. The main results show that: (i) the existence
of locally asymmetrically stable interior equilibrium is possible; and (ii) the evolutionary stability of the
system is similar to the classic asymmetric evolutionary game. These results may provide a new insight
for revealing the evolutionary significance of asymmetric game dynamics.
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1. Introduction

It is well known that Dawkins’ battle of the sexes is one of
the most famous asymmetric games in evolutionary game the-
ory (Dawkins, 1976). In this model, he considered a conflict be-
tween males and females concerning their respective shares in
parental investment. At a fundamental level, this game is rigged
against females by the fact that they produce relatively few, large
gametes, whereas males produce many small gametes. Females
are thereby much more committed and can less afford to lose a
child. Thus males are in many cases in a better position to desert
their female partners and children. They can invest into increas-
ing their offspring with the help of new mates. As an imaginary
game, Dawkins assumed that there are two phenotypes (or called
the strategies) in female population, called “coy” and “fast”, re-
spectively, and two phenotypes in male population, called “faith-
ful” and “philander”, respectively. The coy females insist on a long
courtship, whereas the fast female do not; all females care for the
offspring they produce. The faithful males are willing, if necessary,
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to engage in a long courtship, and also care for the offspring. The
philandering males are not prepared to engage in a long courtship,
and do not care for their offspring. All of these descriptions and
logical reasoning imply a cyclical character: if females are coy, it
pays males to be faithful; if males are faithful, it pays females to
be fast; if females are fast, it pays males to be philandering; and if
males are philandering, it pays females to be coy (Dawkins, 1976;
Hofbauer and Sigmund, 1998; Maynard Smith, 1982; Schuster and
Sigmund, 1981; Schuster et al., 1981).

In order to model the battle of the sexes theoretically, assume
that: (i) the successful raising of an offspring increase the fit-
ness of both parents by G; (ii) the parental investment —C will
be entirely borne by the female if the male deserts, otherwise,
it will be shared equally by both parents; (iii) a long engage-
ment period represents a cost of —E to both partners; and (iv)
0 <E <G <C<2(G-E) (Hofbauer and Sigmund, 1998). Thus, if a
faithful male mates with a coy female, the payoff is G- C/2 — E
for both; if faithful male mates with a fast female, the payoff
is G—C/2 for both; if a philandering male encounters a coy fe-
male, the payoff is 0 for both; and if a philandering male mates
with a fast female, the payoffs of the male and female are G and
G — C, respectively (Hofbauer and Sigmund, 1998). The analysis of
the asymmetric replicator dynamics (or the bimatrix replicator dy-
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namics) shows clearly that the battle of the sexes has an inte-
rior equilibrium (or a unique mixed Nash equilibrium), which is
(x =E/(C—G+E). y*=C/2(G—E)) (where x denotes the pro-
portion (or frequency) of the phenotype “philander” in the male
population and y the proportion of the phenotype “coy” in the
female population), but it is unstable and all orbits are periodic
orbits surrounding it (Hofbauer and Sigmund, 1998; Schuster and
Sigmund, 1981; Schuster et al., 1981). Although this result provides
a possible theoretical explanation for the evolution of the battle of
the sexes, a challenging question is whether the cyclic character
of the battle of the sexes is really favored by natural selection? As
stated by Maynard Smith, “I am unable to offer illustrative exam-
ples, or evidence that such cycles occur” (Maynard Smith, 1982).

In fact, we also notice that the classic theory of replicator dy-
namics has shown that for a two-phenotype bimatrix game dy-
namics, if a unique interior equilibrium exists, then it must be
unstable, or it is either saddle point or singular point (Hofbauer
and Sigmund, 1998; Schuster and Sigmund, 1981; Schuster et al.,
1981). In a standard bimatrix game, it is assumed that: (i) play-
ers in different positions (for example, males and females in the
battle of the sexes) have different strategy sets and payoff matri-
ces, where for convenience, two positions are denoted by position
I and position II, respectively, and two strategy sets are denoted by
R=(Ry. Ry, Rn) for position I and S = (S, S, -+, Sm) for posi-
tion II; and (i) at any time ¢, for each interaction pair (R;, S;), the
probability that a R;-player interacts with a S;-player exactly equals
to the frequency of §; in the Il-population, and similarly, the prob-
ability that a S;-player interacts with a R;-player is the frequency
of R; in the I-population for all i=1,2,---,nand j=1,2,--.,m.
The second assumption strongly implies that the pairwise interac-
tions between I-players and II-players should be uniform. However,
this assumption may be not always true in nature. In 2006, Tay-
lor and Nowak developed the concept of non-uniform interaction
rates in evolutionary symmetric game dynamics, i.e. the probability
of interaction between two individuals is not independent of their
strategies, and they showed that the non-uniform interaction rates
allow the coexistence of cooperation and defection in Prisoner’s
Dilemma (PD) game (Taylor and Nowak., 2006). In fact, the con-
cept of non-uniform rates also implies that under the framework
of evolutionary game with pairwise interactions, the evolution of
behavior should involve two major factors: one is what you will
do in an interaction with a given opponent, and another is what
type of opponents you prefer to interact with. Obviously, both of
these two factors should depend on individuals’ self-interests. Re-
cently, an interesting experimental study shows clearly that, based
on individual self-interest in PD game, if each player can unilat-
erally break off the pairwise interaction with his/her opponent
according to his/her own volition, then all individuals (including
both cooperators and defectors) prefer a cooperator as an oppo-
nent (Zhang et al., 2016; Zheng et al., 2017). So, this simple mech-
anism should have very important evolutionary significance in evo-
lutionary game dynamics (Eshel and Cavalli-Sforza, 1982; Fletcher
and Doebeli.,, 2006). However, we here have to point out that
the mechanism based on individuals’ own volition, proposed by
Zhang et al. (2016) and Zheng et al. (2017), is totally different from
the concept of “assortative matching” (Chaudhuri, 2011) since in
their models they assumed that the population size is large enough
(or infinite) and individuals are unable to detect the strategies of
their opponents before they interact with their opponents.

In this study, we will extend the basic idea in
Zhang et al. (2016) and Zheng et al. (2017) to the bimatrix
game dynamics. For example, according to the definitions and
assumptions of the battle of the sexes with payoff matrices

0 G 0 G-§S-E
(Gf%fE Gf%> (for male) and <G—C G—% ) (for

female) (Hofbauer and Sigmund, 1998), both faithful and philan-
dering males should more prefer to mate with a fast female, and
both coy and fast females should more prefer to mate a faithful
male. However, our main goal is not merely limited to the conflict
between the two sexes, but rather to consider more generally
the effect of the individuals’ own volition on the dynamics of
two-phenotype asymmetric game.

2. Assumptions and model

Consider a two-phenotype asymmetric game (or a two-
phenotype bimatrix game) between R-individuals and S-
individuals, where two phenotypes in R-population are denoted
by R; and R,, respectively, and two phenotypes in S-population
are denoted by S; and S,, respectively. The two payoff matrices

. an  ap by bia
are given by A= G and B = <b21 bzz)' where b
denotes the payoff of a R;-individual in unit time when it plays
against a Sj-individual for i,j=1,2, and a; is the payoff of a
Sj-individual in unit time when it plays against a R;-individual for
J,i=1,2 (Hofbauer and Sigmund, 1998).

Furthermore, we make some basic assumptions, which are
(i) both R- and S-populations are large enough; (ii) the inter-
action between R- and S-individuals is an iterated game (but
it is different from the classic iterated game), where, similar to
Zhang et al. (2016) and Zheng et al. (2017), we assume that for all
interaction pairs, the maximum expected interaction time (or the
maximum number of the repeated rounds) is a same fixed con-
stant, all individuals are able to unilaterally break off the interac-
tions with their opponents at any time t according to their own
volition, and the new interaction pairs are randomly formed; (iii)
similar also to Zhang et al. (2016) and Zheng et al. (2017), all indi-
viduals are assumed to be unable to identify the strategies of their
opponents before they interact with the opponents. Based on these
assumptions, we define that at any time t an interaction pair be-
tween R- and S-individuals will be disbanded with a given proba-
bility, where this probability depends on both R-individual’s strat-
egy and S-individual’s strategy.

Let P; be the frequency of interaction pair (R;, S;) for i, j =1, 2.
Then, the frequencies of R; and R, in the R-population, denoted by
x and 1 — x, respectively, are given by

X="Py+Pa,
1—-x=Pq+Py, (1)

and, similarly, the frequency of S; and S, in the S-population, de-
noted by y and 1 —y, respectively, are given by

y=Py1+Py,
1-y=Py+Py. (2)

The interaction pair (R;, S;) will be disbanded with probability
¢ at any time ¢ for i, j=1,2 and that the single R-individuals
and single S-individuals will form new interaction pairs through
the random meeting (Taylor and Nowak., 2006). Let n; denote the
number of interaction pair (R;, S;) for i, j = 1,2 and notice that

D= 2 ¢1mj (3)
i Gt

is the proportion of R; in the single R-group, and
i Piuna

g= S (4)
> Pijtij

is the proportion of S; in the single S-group. Then, the change rates
of n (i, j = 1,2) because of the recombination of interaction pairs
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