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a b s t r a c t 

The feasibility domain of an ecological community can be described by the set of environmental abi- 

otic and biotic conditions under which all co-occurring and interacting species in a given site and time 

can have positive abundances. Mathematically, the feasibility domain corresponds to the parameter space 

compatible with positive (feasible) solutions at equilibrium for all the state variables in a system under a 

given model of population dynamics. Under specific dynamics, the existence of a feasible equilibrium is a 

necessary condition for species persistence regardless of whether the feasible equilibrium is dynamically 

stable or not. Thus, the size of the feasibility domain can also be used as an indicator of the tolerance 

of a community to random environmental variations. This has motivated a rich research agenda to esti- 

mate the feasibility domain of ecological communities. However, these methodologies typically assume 

that species interactions are static, or that input and output energy flows on each trophic level are un- 

constrained. Yet, this is different to how communities behave in nature. Here, we present a step-by-step 

quantitative guideline providing illustrative examples, computational code, and mathematical proofs to 

study systematically the feasibility domain of ecological communities under changes of interspecific in- 

teractions and subject to different constraints on the trophic energy flows. This guideline covers multi- 

trophic communities that can be formed by any type of interspecific interactions. Importantly, we show 

that the relative size of the feasibility domain can significantly change as a function of the biological 

information taken into consideration. We believe that the availability of these methods can allow us to 

increase our understanding about the limits at which ecological communities may no longer tolerate fur- 

ther environmental perturbations, and can facilitate a stronger integration of theoretical and empirical 

research. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In ecological research, the feasibility of a community corre- 

sponds to the existence of an equilibrium point under which all 

species have positive abundances ( Case, 20 0 0; Hofbauer and Sig- 

mund, 1998; MacArthur, 1970; Meszéna et al., 2006; Pimm, 1982; 

Roberts, 1974 ). Indeed, if one is interested in extant species, neg- 

ative or zero abundances make no biological sense. Therefore, 

studying the feasibility of an ecological community is equal to de- 

termining whether under a given set of environmental conditions 

(abiotic and biotic) the dynamics of a community exhibits a fea- 

sible equilibrium point. That is, feasibility is a binary question: a 

community is feasible or not under a given set of environmental 
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conditions. Nevertheless, one can also extend the study of feasi- 

bility by investigating the range of environmental conditions lead- 

ing to a feasible community. This specific range of environmental 

conditions is known as the feasibility domain ( Logofet, 1993 ). Thus, 

the size of the feasibility domain can be used as an indicator of 

the tolerance of a community to random environmental variations 

( Rohr et al., 2016; Saavedra et al., 2014 ). This has motivated a rich 

research agenda to estimate the feasibility of ecological commu- 

nities in a systematic manner ( Bastolla et al., 2009; Gilpin, 1975; 

Goh and Jennings, 1977; Grilli et al., 2017; Logofet, 1993; Meszéna 

et al., 2006; Rohr et al., 2014; Saavedra et al., 2017b; Stone, 2016; 

Vandermeer, 1975 ). Yet, it is still unclear how to integrate this sys- 

tematic analysis with additional biological information, such as dif- 

ferences in energy flows across trophic levels or even changes in 

the structure of ecological communities. 

Here, we present a step-by-step quantitative guideline to study 

the size of the feasibility domain of ecological communities under 
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changes of interspecific interactions and subject to different con- 

straints on the trophic energy flows. This guideline covers multi- 

trophic communities that can be formed by any type of inter- 

specific interactions. While our framework is based on the clas- 

sic Lotka-Volterra (LV) dynamics ( Page and Nowak, 2002 ), its ad- 

vantage is that the structure and limits of the feasible regions 

of a large variety of ecological communities can be systemati- 

cally studied using convex geometry and probability theory ( Ball, 

1997; Brondsted, 2012; Logofet, 1993; Rohr et al., 2014 ). Moreover, 

the applicability of this approach is not restricted to LV dynam- 

ics as long as the dynamics are topologically equivalent ( Cenci and 

Saavedra, 2018 ). 

This article is organized as follows. First, we discuss the mathe- 

matical definition, geometrical representation, and the probabilistic 

interpretation of the feasibility domain in multispecies communi- 

ties characterized by LV dynamics. Then, we introduce new tools 

to incorporate both changes of species interactions and trophic en- 

ergy constraints into the study of feasibility. After that we present 

an illustrative example to show how our tools can be applied to 

multi-trophic and changing communities. Finally, we discuss fu- 

ture promising avenues of research on feasibility. While we present 

an abridged guideline in the text, all the proofs can be found 

in the Appendixes A–E, and the computational codes in R Core 

Team (2017) is archived on Github. 

2. Mathematical definition of feasibility 

We start by assuming that the population dynamics in a mul- 

tispecies community can be approximated by a LV system in the 

form 

dN i 

dt 
= N i 

( 

r i + 

S ∑ 

j=1 

a i j N j 

) 

, (1) 

where the variable N i denotes the abundance of species i, S is the 

number of species, the parameter r i is the intrinsic growth rate of 

species i , and the parameter a ij is the element ( i, j ) of the inter- 

action matrix A and represents the effect of species j on species i 

( Case, 20 0 0 ). Note that both the intrinsic growth rates and the el- 

ements of the interaction matrix can take either positive, negative, 

or zero values. We take into account only non-degenerate interac- 

tion matrices, i.e., det ( A ) � = 0 . This assumption is valid since it is 

extremely rare to have degenerate cases even under the setup of 

random matrix theory ( Bruneau and Germinet, 2009 ). 

Under the LV dynamics, the equilibrium state(s) of the popu- 

lation is(are) written as the vector N 

∗, which corresponds to the 

state at which d N i /d t = 0 for all species i . This equilibrium state(s) 

is(are) given by the solution(s) of the set of equations 

N 

∗
i 

( 

r i + 

S ∑ 

j=1 

a i j N 

∗
j 

) 

= 0 . (2) 

The positivity of LV dynamics, i.e., species abundances will 

never be negative with strictly positive initial conditions, imposes 

two types of equilibria ( Takeuchi, 1996 ). There can be either a bor- 

der equilibrium, where at least a species goes extinct ( N 

∗
i 

= 0 for 

some species i ), or a feasible equilibrium (also known as interior 

equilibrium), where all species have positive abundances ( N 

∗ > 0). 

If the feasible equilibrium exists is given by N 

∗ = −A 

−1 · r . More- 

over, one can mathematically prove that for a LV model, the exis- 

tence of a feasible equilibrium point is a necessary condition for 

species persistence (and permanence), whether that feasible equi- 

librium is dynamically stable or not ( Hofbauer and Sigmund, 1998 ). 

The mathematical definition above reveals that feasibility de- 

pends strictly on the elements of both the interaction matrix A and 

the vector of intrinsic growth rates r ( Song and Saavedra, 2018 ). 

This implies that, given an interaction matrix A , only certain com- 

binations of species-specific intrinsic growth rates can generate 

feasible equilibria, i.e., for which we have −A 

−1 · r > 0 . Following 

this rationale, studies have been systematically investigating the 

feasibility of ecological communities by looking at the range of pa- 

rameter values of r as a function of a given interaction matrix A 

( Bastolla et al., 2009; Grilli et al., 2017; Logofet, 1993; Rohr et al., 

2014; Saavedra et al., 2017b; Vandermeer, 1975 ). Importantly, since 

environmental conditions can be translated into the vital rates of 

species ( Coulson et al., 2017; Levins, 1968; Meszéna et al., 2006; 

Roughgarden, 1975 ), the range of intrinsic growth rates leading to 

feasibility can represent a set of environmental variations tolerated 

by the community. 

3. Geometrical representation of feasibility 

As explained above, there is only a specific region of the param- 

eter space of intrinsic growth rates that leads to feasible equilibria 

of a community given by an interaction matrix A . This region is 

typically known as the feasibility domain ( Logofet, 1993 ). Formally, 

this feasibility domain is described as 

D F ( A ) = { r = N 

∗
1 v 1 + · · · + N 

∗
S v S , with N 

∗
1 > 0 , . . . , N 

∗
n > 0 } , (3) 

where the vector v j is the negative of the j th columns of the inter- 

action matrix A : 

A = 

⎡ 

⎣ 

a 11 · · · a 1 S 
. . . 

. . . 
. . . 

a S1 · · · a SS 

⎤ 

⎦ = 

⎡ 

⎢ ⎣ 

. . . 
. . . 

. . . 
−v 1 −v 2 . . . −v S 

. . . 
. . . 

. . . 

⎤ 

⎥ ⎦ 

. (4) 

In other terms, the vectors of intrinsic growth rates inside the fea- 

sibility domain are described by positive linear combinations of the 

S vectors given by the negative of each of the S columns of the in- 

teraction matrix (see Appendix A for further details). 

This definition implies that the feasibility domain, D F ( A ), of an 

interaction matrix A can be geometrically represented as an al- 

gebraic cone (see Fig. 1 a for a graphical illustration). An alge- 

braic cone in R 

S is defined as the space spanned by positive lin- 

ear combinations of S linearly independent vectors. This cone is 

also referred in the mathematical literature as a simplicial cone 

( Ribando, 2006 ). For brevity, we will refer to it simply as a cone . 

Therefore, v i can be defined as the i th spanning vector of the fea- 

sible cone. This geometric property confirms, as we mentioned 

before, that the shape and size of the feasibility domain can be 

systematically investigated using convex geometry and probability 

theory ( Ball, 1997; Brondsted, 2012; Logofet, 1993 ). 

4. Probabilistic interpretation of feasibility 

The definitions above allow us to quantify the size of the fea- 

sibility domain under LV dynamics by the solid angle of the cone 

generated by the interaction matrix A (see Fig. 1 b for a graphical 

illustration). By normalizing the solid angle such that it is equal 

to one for the whole unit sphere in R 

S , the normalized solid an- 

gle �( A ) is equal to the probability of sampling uniformly a vector 

of intrinsic growth rates on the unit sphere inside the feasibility 

domain. That is, the normalized solid angle is the proportion of 

the feasible parameter space inside the unit sphere. Formally, the 

normalized solid angle �( A ) can be defined by the ratio of the fol- 

lowing volumes: 

�( A ) = 

vol (D F ( A ) ∩ B 

S ) 

vol (B 

S ) 
, (5) 

where B 

S is the closed unit ball in dimension S ( Gourion and 

Seeger, 2010; Saavedra et al., 2016a ). Note that the least upper 

bound of �( A ) is 0.5, as the largest cone that can be generated by 
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