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a b s t r a c t 

We introduce a mathematical model that describes the allometry of physical characteristics of hollow or- 

gans behaving as pressure vessels based on the physics of ideal pressure vessels. The model was validated 

by studying parameters such as body and organ mass, systolic and diastolic pressures, internal and exter- 

nal dimensions, pressurization energy and organ energy output measurements of pressure-based organs 

in a wide range of mammals and birds. Seven rules were derived that govern amongst others, lack of size 

efficiency on scaling to larger organ sizes, matching organ size in the same species, equal relative effi- 

ciency in pressurization energy across species and direct size matching between organ mass and mass of 

contents. The lung, heart and bladder follow these predicted theoretical relationships with a similar rel- 

ative efficiency across various mammalian and avian species; an exception is cardiac output in mammals 

with a mass exceeding 10 kg. This may limit massive body size in mammals, breaking Cope’s rule that 

populations evolve to increase in body size over time. Such a limit was not found in large flightless birds 

exceeding 100 kg, leading to speculation about unlimited dinosaur size should dinosaurs carry avian-like 

cardiac characteristics. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Any vessel that is exposed to a trans-mural pressure gradient 

can be called a pressure vessel, with even plants being described in 

pressure vessel terms ( Surridge, 2016 ). In the body there are sev- 

eral organ systems that are designed to contain fluid under pres- 

sure ( Casha et al., 2015 ). These organs or organ systems may act as 

biological pressure vessels. 

All cells in the body are organized into a hierarchy of tissues, 

organs and organ systems. Such organ systems are constructed in 

a similar fashion across various mammalian species in that the 

basic building block of a pressure-generating organ is muscle tis- 

sue ( Kohn, 2014 ). The optimization of efficiency of such tissues 

is important as such pressure-generating functions are by neces- 

sity energy-depleting since energy, required for pressure genera- 

tion, must follow physical laws and is energy intensive. The ther- 
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modynamic energy or work required to compress a gas against a 

constant external pressure, or pressure-volume work, is fixed but 

the energy utilized by a biological system is higher due to thermo- 

dynamic losses, with the efficiency of muscle enthalpy (heat and 

work) production being around 12%, although higher values have 

also been quoted ( Laughlin, 1999; Smith et al., 2005; Nelson et al., 

2011 ). 

Organ systems can be divided into solid organs like the liver, 

pancreas and kidneys, and hollow organs that perform pressure- 

based work such as the heart, lungs and bladder ( Casha et al., 

2017 ). Hollow organs that behave as biological pressure vessels are 

subject to the same laws of physics as other material pressure ves- 

sels. It is likely that different pressure-based hollow organs in an- 

imals will demonstrate similar pressure vessel characteristics due 

to the similarity in the building blocks of muscle and bone, simi- 

lar size and genetic relationship ( Katz, 1969; Hess, 1970; Ashmore, 

1971; Alexander et al., 1979; Aerssens et al., 1998; Fritsch et al., 

2009 ). 

This paper investigates the physical characteristics and allome- 

try of ideal pressure vessels to provide a mathematical basis to the 

scaling in size of pressure-based organs; and calculates the rela- 
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Fig. 1. Diagram of bladder and pressure vessel showing maximal distending pressure P and wall stress σ . 

tive efficiency of several hollow organs to the predicted theoreti- 

cal relationships of ideal biological pressure vessels across several 

mammalian and avian species. 

2. Methodology 

2.1. Physics of pressure vessels 

The physics of pressure vessels was investigated to generate 

mathematical relationships based on the physics of simple thin- 

walled pressure vessels. A spherical geometry was assumed for 

hollow pressure-based organs for the sake of mathematical simpli- 

fication, see Fig. 1 , even though many pressure-based organs show 

different external shapes and an extensive branching fractal-like 

network e.g. the lung. 

2.2. Allometry 

The scaling relationship between the two measured variables in 

allometry is governed by a power law ( Shingleton, 2010; Harrison, 

2015 ): 

Y = k M 

α (0–1) 

where Y is the dependent variable, M is body mass, α is the scaling 

exponent and k is a constant . In logarithmic form this power law 

takes the form: 

l og Y = α l og M + l og k (0–2) 

indicating that direct relationships will generate isometric scal- 

ing relationships. A literature search was performed for reports 

with measurements of body and organ mass, pressures, dimen- 

sions, pressurization energy and output measurements of pressure- 

based organs in mammals and birds. 

2.3. Statistics 

Since allometric data can be linearized into the general linear 

equation ( 0–2 ) above, the regression coefficient becomes the slope 

of the regression line, equivalent to the allometric function α with 

a value of one implying a perfect linear equation fit between the 

variables. The 95% confidence interval (CI) for the regression slope 

α and Pearson’s correlation coefficient R 

2 were used to assess this 

linear relationship; R 

2 being a measure of closeness of experimen- 

tal data to the fitted regression line, with an R 

2 of one indicating 

that the model fully explained the variability of data around its 

mean. A scaling exponent outside the CI range of values indicated 

that the allometric relationships did not follow isometric scaling. A 

p -value less than 0.05 was considered as indicating statistical sig- 

nificance. Statistics were performed using IBM SPSS software pack- 

age (Armonk, New York, USA). 

3. Results 

3.1. Seven rules governing pressure vessels 

Seven relationships between physical characteristics of ideal 

pressure vessels were derived that can be applied to biological 

pressure vessels and tested using experimental data from a liter- 

ature search covering physical characteristics of heart, lungs, blad- 

der and aorta in different mammals and birds ( Crosfill and Wid- 

dicombe, 1961; Martin and Haines, 1970; Seymour and Blaylock, 

20 0 0; Yang et al., 2013 ). 

Rule 1. Isometry between pressure vessel wall radius and thickness 

or Laplace’s Law 

In a thin walled spherical pressure vessel with internal radius 

r and thickness t under static equilibrium, see Fig. 1 , the stress σ
in the wall of the hypothetical pressure vessel must balance the 

internal pressure P : 

σ = 

P r 

2 t 
(1–2) 

t = 

P r 

2 σ
(1–2) 

t ∝ r (1–3) 

The first law, that the wall thickness of the organ should be 

directly proportional to the hypothetical radius (linear dimen- 

sion) of the organ, is Laplace’s Law. The scaling exponent is 

0.98 (CI = 0.89–1.07, R 

2 = 0.98, p < 0.01) (17) to 1.02 (CI = 0.89–1.16, 

R 

2 = 0.92, p < 0.01) (17) in mammals and 0.93 in birds (CI = 0.68–

1.18, R 

2 = 0.87, p < 0.01) ( Seymour and Blaylock, 20 0 0 ). 

Rule 2. Isometry between mass of organ and product of surface 

area and thickness 

Assuming that the wall thickness t is small compared to the 

radius r , the mass ( M PV ) of a thin wall shell-shaped pressure vessel 
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