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a b s t r a c t 

Food webs dynamically react to perturbations and it is an open question how additive are the effects 

of single-species perturbations. Network structure may have topological constraints on additivity and this 

influences community response. Better understanding the relationships between single-species and multi- 

species perturbations can be useful for systems-based conservation management. Here we study a single 

model food web by (1) characterising the positional importance of its nodes, (2) building a dynamical net- 

work simulation model and performing sensitivity analysis on it, (3) determining community response to 

each possible single-species perturbation, (4) determining community response to each possible pairwise 

species perturbation and (5) quantifying the additivity of effects for particular types of species pairs. We 

found that perturbing pairs of species that are either competitors or have high net status values in the 

network is less additive: their combined effect is dampened. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The complexity of ecosystems makes it very hard to predict 

the effects of various perturbations, in terms of both sign and size 

( Eklöf and Ebenman, 2006; Yodzis, 1988 ). It is even more difficult 

in case of multiple perturbations. In the context of a dynamical 

food web, it is a basic question how individual single-species per- 

turbations are related, how additive are their effects in terms of 

community response. 

It is an old problem to understand the effects of species dele- 

tions (perturbations) in food webs ( Allesina and Bodini, 2004; 

Allesina et al., 2006; Pimm, 1980; Quince et al., 2005 ). Recent 

developments in network ecology generated a wide interest in 

the link between population dynamics and network position of 

nodes. Several topological characteristics have been proposed to be 

a useful proxy for understanding and predicting dynamics ( Estrada, 

20 07; Jordán, 20 09; Jordán et al., 2003; Pocock et al., 2011 ) with 

the help of dynamical models. Following Pimm (1980) , a number 

of studies focused on better understanding this aspect of the pat- 

tern to process issue in both toy models ( Jordán et al., 20 02, 20 03; 

M όréh et al., 2009 ) and realistically parameterized system models 

( Jordán et al., 2008; Livi et al., 2011 ). Importantly, network analysis 

cannot directly solve the problems of multi-species fisheries but it 
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can quantify the mathematical (topological) constraints on ecosys- 

tem dynamics. In order to separately analyse topological effects on 

the additivity of single-species perturbations in food webs, simple 

models should be used with the minimal number of factors com- 

plicating the evaluation of the structure to dynamics link. 

In this paper, we present a dynamical sensitivity analysis of a 

model food web. Our goals are (1) to perform a topological analysis 

of the food web and determine key nodes (central trophic groups), 

(2) to build and run a simulation model for the same system, in 

order to perform sensitivity analysis, (3) to determine the commu- 

nity response generated by single-species perturbations, (4) to per- 

form pairwise perturbations with the same conditions and (5) to 

compare the results of single-species and multi-species perturba- 

tions and determine the level of additivity. The key aim is to de- 

termine the topological position of species j and k such that their 

parallel perturbation has dampened effects on the ecosystem. 

2. Data 

We analyse a single food web, containing three producers 

(species #1, #2 and #8), one top predator (species #15) and 11 

intermediate species ( Fig. 1 ). The network is of intermediate size 

( N = 15 living trophic groups), so it is still manageable for dynam- 

ical simulations (using several population dynamical parameters) 

but already interesting enough for topological studies (focusing 

only on food web structure). The topology of the network is ar- 

bitrary but a similar study of 100 randomly generated, comparable 

networks is already in progress. 
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Fig. 1. The studied food web. Arrows show carbon flows from resources to con- 

sumers. Producers (species #1, #2 and #8) are marked green, these are not per- 

turbed in our study. Their size is arbitrary but the size of other nodes is propor- 

tional to the community response generated by their single-species perturbations 

( CR j ; species #7 is the largest one). The red shading of nodes is proportional to 

their indirect keystone index ( K indir ; species #15 is of the deepest red colour). See 

Table 1 for numerical results. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article). 

3. Methods 

3.1. Network structure 

In order to quantify the structural importance of network 

nodes, first, we consider the food web as an undirected network 

where effects can spread in any direction (from prey to preda- 

tor and from predator to prey). These are clearly not only energy 

flows but trophic interactions in a broader sense. A range of net- 

work indices can be used for quantifying the positional importance 

of nodes in undirected networks (note that some of these indices 

have versions adapted to directed networks too). Since we still do 

not understand the structure to dynamics relationship, it makes 

sense to test several structural indices and clarifying their relation- 

ship with dynamics. The structural indices are clearly not indepen- 

dent of each other but we study relationships between structural 

versus simulated metrics and investigate which structural indices 

are correlating best with simulated non-additive effects. 

3.2. Degree and weighted degree ( D, wD ) 

The most local network centrality index is the degree of a node 

( D ). This is the number of other nodes connected directly to it. In 

a food web, the degree of a node i ( D i ) is the sum of its preys and 

predators. In the case of weighted networks, the weighted degree 

of node i ( wD i ) equals the sum of weights on links adjacent to 

node i ( Wassermann and Faust, 1994 ). Degree and weighted degree 

can be calculated by the UCINET programme ( Borgatti et al., 2002 ). 

3.3. Betweenness centrality ( BC ) 

This measure of positional importance quantifies how fre- 

quently a node i is on the shortest path between every pair 

of nodes j and k . This index is called “betweenness centrality”

( BC ), used routinely in social network analysis ( Wassermann and 

Faust, 1994 ) and we calculated it using the UCINET programme 

( Borgatti et al., 2002 ). The standardised index for node i ( BC i ) is: 

B C i = 

2 

∑ 

j<k 
g jk ( i ) 

g jk 

( N − 1 ) ( N − 2 ) 
(1) 

where i � = j and k. g jk is the number of equally shortest paths be- 

tween nodes j and k , and g jk ( i ) is the number of these shortest 

paths to which node i is incident (of course, g jk may equal one). 

The denominator is twice the number of pairs of nodes without 

node i . This index thus measures how central a node is, in the 

sense of being incident to many shortest paths in the network. If 

BC i is large for trophic group i , it means that deleting this group 

will more affect many rapidly spreading effects in the web. 

3.4. Closeness centrality ( CC ) 

Closeness centrality ( CC ) is a measure quantifying how 

short are the minimal paths from a given node to all oth- 

ers ( Wassermann and Faust, 1994 ) and is again calculated using 

UCINET ( Borgatti et al., 2002 ). The standardised index for a node i 

( CC i ) is: 

C C i = 

N − 1 ∑ N 
j=1 d i j 

(2) 

where i � = j and d ij is the length of the shortest path between nodes 

i and j in the network. This index thus measures how close a node 

is to others. The larger CC i is for trophic group i , the more directly 

deleting this group will affect the majority of other groups. 

3.5. Positional importance based on indirect chain effects ( TI n and 

WI n ) 

We can assume a network with undirected links where trophic 

effects can spread in many directions without bias. Indirect effects 

do spread in both bottom-up and top-down directions through 

trophic links and, as a result, horizontally, too. We first consider 

an unweighted network. Here, we define a n,ij as the effect of j on 

i when i can be reached from j in n steps. The simplest mode of 

calculating a n,ij is when n = 1 (i.e. the effect of j on i in 1 step): 

a 1, ij = 1/ D i , where D i is the degree of node i (i.e. the number of 

its direct neighbours including both prey and predator species). 

We assume that indirect chain effects are multiplicative and ad- 

ditive. For instance, we wish to determine the effect of j on i 

in 2 steps, and there are two such 2-step pathways from j to i : 

one is through k and the other is through h . The effects of j on 

i through k is defined as the product of two direct effects (i.e. 

a 1, kj × a 1, ik ), this is why multiplicative. Similarly, the effect of j on i 

through h equals to a 1, hj, 1 × a 1, ih . To determine the 2-step effect of 

j on i ( a 2, ij ), we simply sum up those two individual 2-step effects 

(i.e. a 2, ij = a 1, kj × a 1, ik + a 1, hj × a 1, ih ) in an additive way ( Jordán et al., 

2003 ). 

When the effect of step n is considered, we define the effect 

received by species i from all species in the same network as: 

ϕ n,i = 

N ∑ 

j=1 

a n, ji (3) 

which is equal to 1 (i.e. each species is affected by the same unit 

effect.). Furthermore, we define the n -step effect originated from a 

species i as: 

σn,i = 

N ∑ 

j=1 

a n, ji (4) 

which may vary among different species (i.e. effects originated 

from different species may be different). Here, we define the topo- 

logical importance of species i when effects “up to” n step are con- 

sidered as: 

T I n i = 

∑ n 
m =1 σm,i 

n 

= 

∑ n 
m =1 

∑ N 
j=1 a m, ji 

n 

(5) 
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