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a b s t r a c t 

A key issue in ecology is whether a population will survive long term or go extinct. This is the ques- 

tion we address in this paper for a population in a bounded habitat. We will restrict our study to the 

case of a single species in a one-dimensional habitat of length L . The evolution of the population den- 

sity distribution ρ( x, t ), where x is the position and t the time, is governed by elementary processes 

such as growth and dispersal, which, in standard models, are typically described by a constant per capita 

growth rate and normal diffusion, respectively. However, feedbacks in the regulatory mechanisms and ex- 

ternal factors can produce density-dependent rates. Therefore, we consider a generalization of the stan- 

dard evolution equation, which, after dimensional scaling and assuming large carrying capacity, becomes 

∂ t ρ = ∂ x (ρν−1 ∂ x ρ) + ρμ, where μ, ν ∈ R . This equation is complemented by absorbing boundaries, mim- 

icking adverse conditions outside the habitat. For this nonlinear problem, we obtain, analytically, exact 

expressions of the critical habitat size L c for population survival, as a function of the exponents and initial 

conditions. We find that depending on the values of the exponents ( ν , μ), population survival can occur 

for either L ≥ L c , L ≤ L c or for any L . This generalizes the usual statement that L c represents the minimum 

habitat size. In addition, nonlinearities introduce dependence on the initial conditions, affecting L c . 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The collective behavior of living organisms in an hetero- 

geneous environment is a central issue in population ecol- 

ogy ( Hanski, 1999 ). Habitats are naturally heterogeneous due to 

nonuniform distribution of resources and other environmental con- 

ditions that determine life development ( Hanski, 1999; Turner 

et al., 2001 ). Moreover, the current days are characterized by an 

unprecedented influence of human activity on ecosystems (anthro- 

pocene epoch). Humans contribute to the degradation of the en- 

vironment by reducing or fragmenting habitats, but can also in- 

terfere constructively, for example, through species reintroduction 

strategies ( Seddon et al., 2007 ). 

In order to understand the role of environment spatiotempo- 

ral structure in the persistence of the populations, many theoret- 

ical models have been developed ( Giometto et al., 2015; Hanski 

et al., 1994; Hanski and Ovaskainen, 20 0 0; Keymer et al., 20 0 0; 

Neicu et al., 20 0 0; Perry, 20 05; Seddon et al., 2007 ). This question 

is central in the so-called metapopulation theory, which considers 
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sub-populations living in separate domains, coupled through the 

dispersion of individuals ( Hanski, 1999 ). 

The elementary unit is a single domain habitat, which can be 

seen as a refuge (where life is viable) immersed in a harmful 

background ( Berti et al., 2015; Perry, 2005 ). The habitat neighbor- 

hood can be explicitly included in the model or incorporated into 

the boundary conditions ( Hanski et al., 1994; Ludwig et al., 1979; 

Perry, 2005 ). The habitat size plays a crucial role in the fate of 

the population. This role has been investigated in the literature, 

both theoretically and experimentally, for particular dynamics, in- 

cluding diffusion, advection, growth, and features such as the Allee 

effect, for different types of boundary conditions ( Holmes et al., 

1994; Ludwig et al., 1979; Perry, 2005 ). Another relevant aspect 

that has been studied is the fact that the environment changes 

over time ( Colombo and Anteneodo, 2016; Holmes et al., 1994; Lin 

et al., 2004; Neicu et al., 20 0 0 ). In all these cases, the results show 

that the habitat must have a minimal size for population survival. 

This critical value L c depends on the balance between population 

growth and dispersion. 

Despite these many studies, one aspect that has been 

overlooked is the role of nonlinear diffusion and growth 

rate ( Holmes et al., 1994 ), which is the question we address in this 

work. Our results will show, in particular, that the idea that the 

habitat size needs to overcome a critical value to allow population 

survival is not always valid. Depending on the kind of nonlineari- 
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Fig. 1. Temporal evolution of the density distribution profile, in the linear case ν = 

μ = 1 . For (a) L < L c , (b) L = L c = π and (c) L > L c , the population becomes extinct, 

attains a steady state or blows up, respectively. The lines are produced with Eq. (5) . 

The arrows indicate the direction of time. 

ties present, population survival occurs for L ≥ L c , L ≤ L c or for any 

L . Additionally, nonlinearity introduces sensitivity to initial condi- 

tions, which affects the values of L c . 

We address these issues assuming a general nonlinear popula- 

tion dynamics taking into account, in an effective manner, density- 

dependent regulatory mechanisms. We focus on the one dimen- 

sional case, where L is the length of the habitat. The evolution 

equation for the population density distribution ρ( x, t ) at position 

x and time t is given by 

∂ t ρ = ∂ x (ρ
ν−1 ∂ x ρ) + ρμ , (1) 

where ν > 0, μ ∈ R , together with the absorbing boundary condi- 

tion ρ(±L/ 2 , t) = 0 and a uniform initial condition ρ(x, 0) = N 0 /L, 

where N 0 is the initial population size. The terms of Eq. (1) rep- 

resent diffusion and growth, respectively, with diffusion coefficient 

ρν−1 and per capita growth rate ρμ−1 , which depend on ρ when 

ν , μ � = 1. The boundary conditions take into account a nonviable 

neighborhood. Competition was neglected by assuming abundance 

of resources. Further details of the model and its biological moti- 

vations will be given in Section 2 . 

The emergence of these nonlinearities in population dynam- 

ics has different origins that will be discussed in Section 2 too. 

But beyond the biological motivation, the nonlinear mathematical 

problem can be also of interest for diverse other fields such as 

combustion theory, heat conduction and transport in porous me- 

dia ( Galaktionov and Vázquez, 2002; Newman, 1980 ). It is also re- 

lated to the so-called blow-up (divergence at finite time) of so- 

lutions, found in the mathematical literature ( Fujita, 1966; Galak- 

tionov and Vázquez, 2002; Newman, 1980 ). 

An illustrative example of the addressed problem is shown in 

Fig. 1 , for the linear case. The population goes extinct for small 

habitat with L < L c ( Fig. 1 a), increases for L > L c ( Fig. 1 c) and tends 

to a steady state at the critical value ( Fig. 1 b). Our goal is to deter- 

mine the critical size and characterize the regimes of extinction 

and survival in the general nonlinear case. In order to do that, 

we perform a systematic analysis, both numerically and analyti- 

cally, of the asymptotic behavior of the total population N(t) ≡∫ 
� ρ(x, t) dx, where � ≡ [ −L/ 2 , L/ 2] . For numerical integration of 

the partial differential Eq. (1) , the standard forward-time centered- 

space discretization scheme was used. 1 

2. Model 

In population dynamics, the Fisher-KPP equation ( Fisher, 1937 ) 

has been a paradigmatic model as far as it includes the most ele- 

mentary processes. In one dimension, it reads 

∂ t ρ = D∂ xx ρ + aρ − bρ2 , (2) 

where D, a and b , are positive parameters that give the rates of 

diffusion, growth (including reproduction and death) and competi- 

tion, respectively. The local part of Eq. (2) is composed by a logis- 

tic term aρ(1 − bρ) that induces exponential growth at low densi- 

ties and an upper bound to the population size when ρ → a / b . The 

Laplacian term D ∂ xx ρ takes into account the unbiased population 

fluxes through space, assuming that individuals perform a random 

(Brownian) motion ( Turchin, 2015 ). In this standard case, the per 

capita growth rate and the diffusion coefficient are constant. 

We introduce density-dependent rates, through nonlinearities 

in the growth and diffusion processes. These dependencies on the 

density represent macroscopic feedbacks in the regulatory mech- 

anisms, that can emerge from the complex interactions at indi- 

vidual level, such as cooperation, competition or homophilia (the 

preference to be among peers) ( Courchamp et al., 1999 ), or from 

the interactions with a complex environment. Assuming power-law 

forms, we generalize Eq. (2) as 

∂ t ρ = D∂ x (ρ
ν−1 ∂ x ρ) + aρμ − bρμ+ δ , (3) 

with exponents ν > 0, δ > 0 and real μ. 

Diffusion. In many real cases, the diffusion coefficient is not con- 

stant, which may be a consequence of the interaction between 

individuals ( Cates et al., 2010; Murray, 2002 ). For instance, in 

populations of insects, such as grasshoppers, the diffusion coef- 

ficient is enhanced at high densities (consistent with ν > 1), but, 

in other species, this occurs at low densities (consistent with 

ν < 1) ( Murray, 2002 ). The adopted form of the diffusion coeffi- 

cient, Dρν−1 , allows to embrace all these cases. The spread of in- 

sect swarms, bacteria and other organisms has been also described 

through a nonlinear diffusion equation with different values of 

ν ( Gurtin and MacCamy, 1977; Kareiva, 1983; Murray, 2002; New- 

man, 1980 ). When ν > 1, the diffusion coefficient increases with 

population density. Then, large dispersal takes place in dense re- 

gions ( ρ > 1), but low mobility occurs where the population is 

sparse ( ρ < 1). This indicates that individuals become more active 

when they encounter more individuals, a type of positive feedback 

that increases with ν . In contrast, when 0 < ν < 1, the diffusion co- 

efficient is enhanced in regions of low density, in comparison to 

highly populated ones. Then, this dispersion in open space yields 

long tails in the distribution of individuals ( Anteneodo, 2005; Lenzi 

et al., 2001; Tsallis and Bukman, 1996 ), but here we are dealing 

with a bounded domain. 

Alternatively, nonlinear diffusion may also have external ori- 

gin, from the spatial heterogeneity of the environment, such as 

the recently investigated case of bacteria developing in porous me- 

dia ( Sosa-Hernández et al., 2017 ). In fact, ∂ t ρ = D∂ x (ρν−1 ∂ x ρ) is 

known as porous media equation ( Drazer et al., 20 0 0; Muskat and 

Wyckoff, 1937 ), which arises in other contexts too ( Galaktionov 

and Vázquez, 2002; Newman, 1980; Newman and Sagan, 1981 ). 

Let us note that the associated random dispersal yields anoma- 

lous diffusion in open space, where x ∼ t 1 / (1+ ν) . That means nor- 

mal diffusion for ν = 1 , subdiffusion for ν > 1 and superdiffusion 

1 We used a forward-time centered-space (FTCS) scheme, with integration steps 

�t and �x adequate for convergence. Typically it was necessary that �t/ �x 2 � 

10 −3 . See, for instance, Ref. Press et al. (2007) . 
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