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In this note, we characterize the embeddability of generic Kimura 3ST Markov matrices in terms of their 

eigenvalues. As a consequence, we are able to compute the volume of such matrices relative to the vol- 

ume of all Markov matrices within the model. We also provide examples showing that, in general, muta- 

tion rates are not identifiable from substitution probabilities. These examples also illustrate that symme- 

tries between mutation probabilities do not necessarily arise from symmetries between the correspond- 

ing mutation rates. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Genomic data expressed by means of sequence alignments is 

widely used to infer phylogenetic relationships between species. 

Substitution models are used to describe the evolutionary process 

that leads from one DNA sequence to another. These models are 

usually given in terms of a family of Markov matrices with a pre- 

scribed structure. The entries of these matrices represent the con- 

ditional probabilities of nucleotide substitution between one se- 

quence and the other, and can be obtained either by counting the 

relative frequencies of these substitutions or fitting the parameters 

of the model using maximum likelihood. Usually, the structure im- 

posed by the model is motivated by some biological / biochemi- 

cal properties observed (e.g. the Kimura 3ST model Kimura, 1981 ) 

or some computational / mathematical convenient assumptions 

to deal with the model (e.g. the GTR model Tavaré, 1986 or Lie 

Markov models Sumner et al., 2012 ). Moreover, evolution is usu- 

ally modelled by means of Markov chains, together with the addi- 

tional assumption that all sites in the sequences evolve indepen- 

dently and according to the same probabilities. 

A general approach in modelling evolution corresponds to re- 

garding time as a continuous variable where substitution events 

always happen at the same rate, which remains constant through- 

out the whole evolutionary process. This leads to the homogeneous 

continuous-time substitution models, where only Markov matrices 

that are the exponential of a rate matrix are considered. Clearly 
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this is used as an approximation to biological reality where it is 

well known that transition rates vary over time ( Ho et al., 2005; 

2007 ) and also among the different branches of the phylogenetic 

tree ( Lockhart et al., 1998 ). However, given the bias / variance com- 

pensation of the statistical analysis ( Burnham and Anderson, 2002 ), 

modelling phylogenetic evolution as a non-homogeneous process is 

not statistically feasible in practice (cf. Sumner et al., 2012 ). 

A different approach appears when one regards the evolution- 

ary process as a whole and only takes into account the conditional 

probabilities between the original and the final sequences, with- 

out caring about rates of mutation. When these probabilities are 

taken as the parameters of the model, we deal with the so-called 

algebraic models. 1 Algebraic models have been used in a num- 

ber of theoretical papers, including Allman and Rhodes (2008) ; 

Casanellas and Fernández-Sánchez (2010) ; Draisma and Kut- 

tler (2008) ; Sturmfels and Sullivant (2005) . 

If one attempts to connect both approaches, a natural question 

is to decide whether a given Markov matrix is the exponential of 

some rate matrix, whose entries would be some kind of average 

of the rates involved throughout the evolutionary process. In this 

case, we say the matrix is embeddable and this question is known 

in the literature as the embedding problem for Markov matrices. An 

easier version of this problem is to decide whether the rate ma- 

trices associated to the embeddable matrices of a particular (alge- 

braic) model M should keep the same symmetries as the model 

( M - embeddability , see definition in Section 2.2 ). The embedding 

1 Here, “algebraic” refers to the fact that the probabilities of pattern observation 

at the leaves of a phylogenetic tree evolving under these models are given by al- 

gebraic expressions (only sums and products) in terms of the parameters of the 

model. 

https://doi.org/10.1016/j.jtbi.2018.02.005 

0022-5193/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.jtbi.2018.02.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2018.02.005&domain=pdf
mailto:jordi.roca.lacostena@upc.edu
mailto:jesus.fernandez.sanchez@upc.edu
https://doi.org/10.1016/j.jtbi.2018.02.005


J. Roca-Lacostena, J. Fernández-Sánchez / Journal of Theoretical Biology 445 (2018) 128–135 129 

problem is relevant even if restricted to continuous-time models 

since it is not true in general that the product of embeddable 

matrices is necessarily embeddable (indeed, the Baker–Campbell–

Hausdorff formula Campbell, 1897 leads to ask whether some se- 

ries of matrices is convergent or not, which is not always true 

Blanes and Casas, 2004 ). These questions are closely related to the 

problem of the multiplicative closure of continuous-time models, 

namely whether the product of matrices e Q 1 e Q 2 where Q 1 and Q 2 

are rate matrices in one particular (continuous-time) model can be 

obtained as some e Q for some rate matrix Q in the same model . Af- 

ter Sumner et al. (2012) and Sumner (2017) , it is known that there 

are popular models which are not multiplicatively closed, notably 

including the GTR model and the HKY model. 

The reader is referred to Davies (2010) for a nice overview 

of the embedding problem from a mathematical point of 

view. In a more biological and applied setting, the paper by 

Verbyla et al. (2013) deals with the possible consequences for phy- 

logenetic inference. Also, the paper Sumner et al. (2012) and the 

more recent paper Woodhams et al. (2017) deal with the inciden- 

tal question of how the lack of (multiplicative) closure in substi- 

tution models have consequences for the phylogenetic analysis of 

data. 

In this paper, we deal with the embedding problem from a the- 

oretical perspective. The main goal is to obtain a characterization 

for the embeddability of generic matrices of the Kimura 3ST model 

( Kimura, 1981 ). From our results, we will be able to compute the 

whole volume of embeddable Kimura 3ST matrices and compare it 

with the volume of the whole space of Kimura 3ST Markov matri- 

ces. At the same time, we provide a number of examples showing 

matrices that are embeddable but for which the mutation rates are 

not identifiable or do not keep the same structure of the model. 

The recent paper Kosta and Kubjas (2017) deals with the simi- 

lar question of characterizing embeddable matrices of symmetric 

group-based phylogenetic models, but focusing on the existence of 

rate matrices strictly in the model. 

The organization of the paper is as follows. In Section 2 , we 

recall some definitions and basic facts concerning the embedding 

problem and the Kimura 3ST model. Here, we also show that any 

embeddable matrix is biologically relevant since it can be seen as 

the transition matrix of a concatenation of realistic evolutionary 

processes (“realistic” here means a process whose transition matrix 

is close to the identity matrix, see Theorem 2.2 ). In Section 3 , we 

prove the main theorem which characterizes under the (generic) 

assumption of having different eigenvalues the Kimura 3ST embed- 

dable matrices in terms of inequalities to be satisfied by the eigen- 

values. We devote as well some attention to the case of matrices 

with repeated eigenvalues as they present certain situations that 

may be interesting from a theoretical and applied point of view. 

Namely, these matrices show that the identifiability of the muta- 

tion rates is not a generic property for the Kimura 2ST model or 

the Jukes–Cantor model, as well as that there are embeddable ma- 

trices with rate matrices that do not keep the same symmetries of 

the model (see Theorem 3.2 ). As a consequence of the characteri- 

zation mentioned above, in Section 4 we are able to compute the 

volume of embeddable matrices and compare it to the volume of 

all Kimura 3ST Markov matrices. Finally, Section 5 discusses impli- 

cations and possibilities for future work. 

2. Preliminaries 

2.1. Embedding problem of Markov matrices 

We denote by M k (K ) the space of all square k -matrices with 

entries in a field K , where K is R or C . Given a matrix A ∈ M k (K ) , 

we say that B ∈ M k (K ) is a logarithm of A if e B = A, where the ex- 

ponential of a matrix is defined as 

e X = 

∑ 

n ≥0 

X 

n 

n ! 
. 

A classical result states that det(e X ) = e tr(X ) , so the determinant 

of any matrix of the form e X is never 0. Given a non-negative 

complex number x ∈ C \ R 

−, we will denote by log ( x ) its princi- 

pal logarithm , that is, the only logarithm of x that lies in the strip 

{ z | −π < Im (z) < π} . Although the exponential map of matrices is 

not injective, it is known that if A is a matrix with no negative 

eigenvalues, there is a unique logarithm X of A all of whose eigen- 

values are given by the principal logarithm of the eigenvalues of 

A (Theorem 1.31 of Higham, 2008 ). We will refer to this as the 

principal logarithm of A and we will denote it by Log ( A ). In the par- 

ticular case where the matrix A is diagonalizable, A = S D S −1 then 

Log(A ) = SLog(D ) S −1 , where Log ( D ) is the diagonal matrix with di- 

agonal entries equal to the principal logarithm of the eigenvalues 

of A . 

Definition 2.1. A matrix M ∈ M k (R ) is said to be a Markov matrix if 

all the entries are non-negative and the rows sum to one. A matrix 

Q ∈ M k (R ) is said to be a rate matrix if all the non-diagonal entries 

are non-negative and the rows sum to zero. 

If Q is a rate matrix, it is well-known that e tQ = 

∑ 

n ≥0 
t n Q n 

n ! is 

a Markov matrix for all t ≥ 0. That is why rate matrices are also 

referred as Markov generators ( Davies, 2010 ). However, not every 

Markov matrix can be obtained in this way. A Markov matrix M is 

said to be embeddable if M = e Q for some rate matrix Q . The em- 

bedding problem attempts to decide which (Markov) matrices are 

embeddable, that is, which matrices can be written as M = e Q , 

where Q is a rate matrix. We would like to point out that every 

embeddable matrix can be obtained as the substitution matrix of 

a long-running biologically realistic Markov process. Namely, 

Theorem 2.2. Every embeddable matrix is the product of embeddable 

matrices close to the identity matrix. 

Proof. Assume that M is an embeddable Markov matrix: M = e Q . 

Clearly, Q n := 

1 
n Q is still a rate matrix for any n ≥ 1, so M = (e Q n ) n 

appears as the n -th power of a Markov matrix. Moreover, since 

lim 

n →∞ 

e Q n = e lim n →∞ Q n = e (0) = Id, 

we can take n big enough so that e Q n is as close to Id as 

wanted. �

2.2. Kimura models 

In this work we deal with the substitution model introduced by 

Kimura (1981) . The Kimura 3ST model assigns three parameters to 

different type of substitutions: one parameter for transitions, i.e. 

substitutions between purines ( A ↔ G ) or pyrimidines ( C ↔ T ), and 

two parameters for transversions, i.e. substitutions that change the 

type of nucleotide: from purine to pyrimidine or vice versa. Order- 

ing the set of nucleotides as A , G , C , T , the Markov matrices within 

the model are described by the following structure: 

Definition 2.3. A matrix M ∈ M 4 (C ) is Kimura 3ST (is K3 or has K3 

form, for short) if it has the following structure: 

M = 

⎛ 

⎜ ⎝ 

a b c d 
b a d c 
c d a b 
d c b a 

⎞ 

⎟ ⎠ 

. (1) 

For ease of reading we will use the notation M = K(a, b, c, d) to 

denote a matrix with the structure in (1) . 
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