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a b s t r a c t 

It is now widely accepted that biochemical reaction networks can perform computations. Examples are 

kinetic proof reading, gene regulation, or signalling networks. For many of these systems it was found 

that their computational performance is limited by a trade-off between the metabolic cost, the speed 

and the accuracy of the computation. In order to gain insight into the origins of these trade-offs, we 

consider entropy-driven computers as a model of biochemical computation. Using tools from stochastic 

thermodynamics, we show that entropy-driven computation is subject to a trade-off between accuracy 

and metabolic cost, but does not involve time-trade-offs. Time trade-offs appear when it is taken into 

account that the result of the computation needs to be measured in order to be known. We argue that 

this measurement process, although usually ignored, is a major contributor to the cost of biochemical 

computation. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Computing architectures based on biochemistry, rather than 

semi-conductor technologies, are attracting increasing interest as 

alternative models of computation ( Amos, 2004 ). Biochemistry can 

be used to engineer novel types of computers based on biological 

components. Examples include, DNA based computers ( Lakin and 

Phillips, 2011; Seelig et al., 2006 ), robots controlled by slimemo- 

lds ( Tsuda and Zauner, 2009 ), or logic gates implemented in liv- 

ing cells ( Amos et al., 2015; Friedland et al., 2009; Silva-Rocha and 

de Lorenzo, 2011; Sole and Macia, 2013 ). Beside this technologi- 

cal importance of biochemical computers, there is now also an in- 

creasing appreciation that information processing may be an im- 

portant fitness contributing function for natural organisms ( Davies 

and Walker, 2016; Walker et al., 2016 ). There are a number of 

biosystems that have been studied as in vivo special purpose com- 

putations. For example, kinetic proofreading ( Fluitt et al., 2007; 

Ninio, 1975 ) greatly enhances the copying fidelity during transla- 

tion and is often interpreted as an in vivo computation. A classical 

example of biochemical computation is bacterial sensing ( Berg and 

Purcell, 1977; Govern and Wolde, 2014; Gregor et al., 2007; Mehta 

and Schwab, 2012 ), whereby cells measure molecular concentra- 

tions in their environment and modify internal pathways and gene 

expression levels in response. Chemotaxis ( Alon et al., 1999 ), for 

instance, depends on organisms sensing a molecular concentration 
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gradient by computing the difference between several measure- 

ments, either in time or across the cell volume. Most recently even 

bacterial growth dynamics has been interpreted as a computational 

process ( Chu, 2015; Chu and Barnes, 2016 ). 

Detailed case studies of biological computers often find per- 

formance limits to biochemical computations. For a simple gene- 

switch, Zabet and coworker found a trade-off between the cost, the 

accuracy and the speed of the computation ( Chu et al., 2011; Za- 

bet and Chu, 2010 ). Similar trade-offs were established for other 

biological systems, including chemotaxis ( Lan et al., 2012 ), regu- 

lation of nutrient uptake ( Chu and Barnes, 2016 ), and translation 

( Johansson et al., 2012 ); lower limits on the cost of sensing (not 

involving trade-offs) have also been found recently ( Govern and 

Wolde, 2014; Kaizu et al., 2014 ). 

Intuitively such trade-offs are to be expected. Bio-chemical 

networks are stochastic systems and as such subject to noise. 

Overcoming this noise requires energy input and time. Energy- 

time-accuracy trade-offs are also implied by the classical results 

on the physics of computation ( Bennett, 1982; Feynman and 

Hey, 20 0 0; Landauer et al., 1990 ). While there does not seem 

to be a lower limit for the energy used during a computation, 

Bennett (1982) pointed out that in the zero energy limit the speed 

of computation goes to zero. Computations that complete within a 

finite time, therefore require finite energy resources. 

The question is now whether one can go beyond both the in- 

dividual case studies of biochemical computers and the intuitive 

arguments and establish a model which provides insights into the 

origins of the performance limits to biochemical computations. The 
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task is a difficult one. For one, there is a wide variety of approaches 

to biochemical computation (only some of which are mentioned 

above). At the same time, there is no general definition of biolog- 

ical computation, i.e. it is not clear how to distinguish a reaction 

network that computes from one that does not. 

For the purpose of this article, we will take a pragmatic ap- 

proach with respect to the latter question and simply identify (in 

Section 2.1 ) computation with out-of-equilibrium biochemical pro- 

cesses. According to this, every biochemical process that is not in 

equilibrium performs a computation. As far as the wide variety 

of biochemical computations are concerned, we will abstract away 

from specific models and define the concept of entropy driven com- 

puters (EDC) in Section 2.2 . This will capture many properties of 

in vivo computers as they appear in biological systems. EDCs are 

in many aspects different from real biological networks, but we 

will argue that they share important characteristics with a wide 

range of biochemical computers. It is perhaps best to think of EDCs 

as test-tube biochemistry, as it is frequently used in biological re- 

search to study reaction networks in vitro . 

We model EDCs as continuous time Markov chain models of 

biochemical systems. We assume that each model is initialised in 

some state and then left to relax to equilibrium. We will then in- 

terpret this relaxation process as a computation. Throughout this 

article we will assume that the EDC is of mesoscopic scale. By this 

we mean that it is still affected by stochastic fluctuations, but that 

it is also within the range of validity of the linear noise approx- 

imation ( van Kampen, 2007 ). Simply put, this assumption states 

that the stochastic system behaves like the deterministic equiva- 

lent, plus some noise. The linear noise approximation is a very 

good approximation for mesoscopic systems and holds true for a 

wide range of biochemical systems, and hence for a wide range of 

biological “computers” such as gene regulatory networks, protein- 

protein interactions or intra and inter-cellular signalling systems, 

although clearly there are systems that will not be captured by this 

assumption. 

For the purpose of the present contribution, we will identify the 

cost in energy of a computation with the entropy produced during 

the computation. While this does not quantify the actual metabolic 

cost of this computation, it is directly related to it. We will first 

show that the linear noise approximation implies that the entropy 

production scales linearly with the system size, while the time- 

scale to approach equilibrium (which we interpret as the comput- 

ing time) remains invariant. This means that there is a trade-off

between the cost of the computation and its accuracy, but there is 

no trade-off involving the speed of the computation. Contrary to 

previous work (or apparently so), this suggests that speed-energy 

trade-offs are not a fundamental property of biochemical compu- 

tation per se 

A trade-off involving time emerges only when it is taken into 

account that the result of the computation must be measured in 

order for the computation to have any impact in the world. Any 

measurement of the outcome of the computation in turn requires 

a measurement device. This device needs to be brought into con- 

tact with the computer to determine its state. Device and com- 

puter then form a joint system, which initially will be out of equi- 

librium but relaxes to an equilibrium. This relaxation constitutes 

the measurement process. Formally a measurement is thus also an 

entropy driven computation. As we will show below, restoring the 

computer to its original state, while at the same time leaving the 

measurement device in a state that indicates the result of the com- 

putation, requires both energy input and time. It also leads to a 

trade-off between the energy used and the speed with which the 

restoration can be completed with a given confidence. A second 

trade-off involving time arises from the stochastic nature of the 

computer. A single measurement only indicates the correct result 

with a certain probability. Repeated measurements are necessary 

in order to sample the state of the computer reliably, thus leading 

to a trade-off between accuracy and time. 

2. Results 

2.1. Computation by biochemical systems 

The current modus operandi in the field of biochemical com- 

puting is to identify a biological system (such as sensing or proof- 

reading) as a computation when it implements a function that is 

naturally interpreted as a computation. This approach enables deep 

insights into specific examples, but is likely to miss most instanti- 

ations of biochemical computation. It would be much more useful 

to have a concept of biochemical computation that is independent 

of its function, just as in computer science computation is defined 

with respect to a number of specific mathematical models, not by 

reference to what is computed. 

The best known model of computation is the Turing machine . 

This is a mathematical construct consisting of a “reading head”

that is reading and writing a tape, while changing its internal 

states in the process, until it reaches a “halting state,” at which 

point the computation stops. It is believed that for every com- 

putable function there is a corresponding Turing machine that 

computes it. Based on this, one could be tempted to define a bio- 

chemical process as a computation if there is a Turing machine 

that simulates this process. This does not work however: The natu- 

ral equivalent of a halting state in biochemical systems is the equi- 

librium state, i.e. the state of the biochemical system where re- 

actions are in detailed balance. Unlike the halting state of a Turing 

machine, the equilibrium state is of a statistical nature. This means 

that on average there are no net-fluxes across the network of re- 

actions ( Beard et al., 2002; Qian and Beard, 2005 ). This does not 

mean, however, that reactions stop. Even in equilibrium there is an 

ongoing chemical activity. Crucially though, the sequence of reac- 

tion events is symmetric in time ( van Kampen, 2007 ), such that an 

observer would not be able to tell apart an actual sequence of re- 

actions from a (hypothetical) reversed sequence. Equilibrium is not 

time-directed. Computation, on the other hand, is necessarily time 

directed, mapping a particular input to a particular output. Equi- 

librium systems are therefore not able to compute. Sample paths 

of equilibrium biochemical systems can still be simulated and are 

thus computable by Turing machines, whether or not the system 

is in equilibrium. This demonstrates that not all processes that can 

be simulated by Turing machines are also themselves processing 

information. 

For the purpose of this paper, we will adopt the simplest work- 

ing hypothesis and postulate that the equilibrium state is the only 

halting state of biochemical computers. This implies that every bio- 

chemical system that is not in equilibrium is in the process of 

computing. By adopting this definition, we also accept that most 

biochemical computers will not do any useful calculations, just as 

almost all Turing machines do not compute anything of interest. 

2.2. Entropy driven computation 

In this section we define an EDC as a closed, stochastic, bio- 

chemical system, denoted by a fraktur S, S . The system does not 

exchange particles with the environment. We conceptualise S as 

consisting of a (typically very large) number of discrete microstates 

s 0 , s 1 , . . . , s m 

(see Supplementary Section 1 for more details). An 

EDC is initialised in a macrostate M 

S 

0 
characterised by a speci- 

fied abundance for each of its constituent biochemical species at 

time t = 0 ; see Supplementary Section 1 for a detailed explana- 

tion of what we mean by “macrostate.” After a transient period, 

the biochemical system approaches an equilibrium state M 

S ∞ 

char- 

acterised by detailed balance. The approach to equilibrium is the 
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