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a b s t r a c t 

The classical idea of evolutionarily stable strategy (ESS) modeling animal behavior does not involve any 

spatial dependence. We considered a spatial Hawk–Dove game played by animals in a patchy environ- 

ment with wrap around boundaries. We posit that each site contains the same number of individuals. An 

evolution equation for analyzing the stability of the ESS is found as the mean dynamics of the classical 

frequency dependent Moran process coupled via migration and nonlocal payoff calculation in 1D and 2D 

habitats. The linear stability analysis of the model is performed and conditions to observe spatial patterns 

are investigated. For the nearest neighbor interactions (including von Neumann and Moore neighborhoods 

in 2D) we concluded that it is possible to destabilize the ESS of the game and observe pattern formation 

when the dispersal rate is small enough. We numerically investigate the spatial patterns arising from the 

replicator equations coupled via nearest neighbor payoff calculation and dispersal. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Evolutionary game theory is a mathematically accessible way 

of describing different behavioral traits in a population each of 

which is associated with a pure strategy of the underlying game. 

The initial focus of evolutionary game theory was on the con- 

cept of evolutionarily stable strategies (ESS) which is used to en- 

hance our understanding of the evolution of animal behavior by 

Maynard Smith (1974) and Maynard Smith and Price (1973) . A 

strategy is defined to be an ESS if a small number of individu- 

als playing a different strategy cannot invade a population play- 

ing it. An important question regarding ESS is if such a strategy 

is attainable. The study by Taylor and Jonker (1978) extended the 

realm of evolutionary game theory to include dynamics. In other 

words, they introduced the replicator equations relating the ESS 

concept with the equilibria of these equations ( Hofbauer and Sig- 

mund, 1998 ). Since then replicator equations are at the core of 

evolutionary game theory. This classical model describes the evo- 

lution of behavioral traits in an infinite population assuming that 

a given individual is equally likely to interact with any other. 

Key advances were made by relaxing some of the above men- 

tioned assumptions. In particular, the inclusion of finite popula- 

tions and spatial structure in evolutionary games have accelerated 

the progress of the theory. 
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Stochastic processes have been applied to model evolutionary 

game dynamics in finite populations ( Taylor et al., 2004 ). There 

are a variety of microscopic rules describing the game dynamics in 

finite populations such as birth-death update, death-birth update 

or pairwise comparison rules ( Ohtsuki et al., 2006 ). These update 

rules describes a class of Markov chains, transition probabilities of 

which are assumed to depend on frequencies of phenotypes and 

game parameters. For many of these processes, replicator equa- 

tion is not only a limiting deterministic case ( Traulsen et al., 2005 ) 

but also describes the mean dynamics of the underlying Markov 

chains. 

Considering the fact that natural environments possess a spatial 

dimension, meaning that individuals have limited mobility and in- 

teract with their neighbors, led many scholars to incorporate this 

important property into the study of evolutionary games. To anal- 

yse the effect of spatial structure on evolutionary game dynam- 

ics different approaches have been taken in to account: numer- 

ical simulations of games on grids (see e.g. Nowak et al., 1994; 

Nowak and May, 1992; Nowak and Sigmund, 20 0 0 ) or more gen- 

eraly on graphs ( Allen and Nowak, 2014; Szabó and Fath, 2007 ); 

and analytical studies of replicator-diffusion equations (see, for ex- 

ample, Ferriere et al., 20 0 0; Hofbauer, 1998; Hofbauer et al., 1997; 

Hutson and Vickers, 1992 ). We would like to note that a similar 

partial differential equation is found as a hydrodynamical limit of 

the frequency dependent Moran process ( Chalub and Souza, 2009 ). 

In addition, integro-differential replicator equations taking nonlo- 

cal payoff calculation into consideration were obtained as a meso- 
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scopic limit of the structured individual based models (see e.g. 

Aydogmus et al., 2017; Hwang et al., 2013 ). 

Here we let individuals play the Hawk-Dove game, originally 

developed by Maynard Smith and Price (1973) , to describe certain 

scenarios in animal conflict modeling a contest over a shareable re- 

source. There are two subtypes or morphs of one species with two 

strategies, Hawk and Dove. Both subtypes first display aggression. 

The Hawk escalates into a fight until it either wins or is injured 

(loses), whereas the Dove runs for safety if faced with major es- 

calation. Unless faced with such escalation, the Dove attempts to 

share the resource. 

Rather than taking the continuous space into account as in 

replicator-diffusion or integro differential equations, we consider 

a landscape ecology perspective and subdivide the environment 

into distinct but identical patches with periodic boundaries each 

of which contains a population of K individuals. We would like 

to note that stochastic population models considering a collection 

of patches on which a number of individuals lives were studied 

by Tilman and Kareiva (1997) and Arrigoni and Pugliese (2002) . In 

evolutionary game theory literature, a similar approach was taken 

by Hauert and Imhof (2012) to study a finite population of indi- 

viduals subdivided into demes with the assumption of local inter- 

actions meaning that individuals interact only with other members 

of the same deme. 

In our dynamical setting we assume that a patch containing 

two subtypes of the same species is chosen randomly at each time 

step. Then an individual is drawn from this site with a probability 

depending on its fitness and replaces a randomly chosen individual 

from its natal site with probability 1 − μ or one of the neighbor- 

ing sites. Such a process can be seen as a spatial coupling of fre- 

quency dependent Moran processes ( Taylor et al., 2004 ) via disper- 

sal. Hence μ identifies the dispersal probability of a newborn. The 

fitness calculation, on the other hand, has two major components. 

The first one is the payoff calculation and the other is related to 

determining the effect of payoffs on fitness. 

Using replicator-diffusion equations as a modeling tool leads us 

to the assumption of local interactions ( i.e. local payoff calcula- 

tion) as in Hauert and Imhof (2012) . In the context of the Hawk- 

Dove game, this is to say that individuals living at a patch do 

not compete for the resources with the residents of other sites. 

This very same assumption, on the other hand, was criticized by 

Britton (1989) and Doebeli and Killingback (2003) and relaxed by 

supposing that reproduction and hence population dynamics take 

place in a habitat patch whose resources are also used by individ- 

uals that live and reproduce in neighboring patches through for- 

aging. This relaxation leads us to the fact that individuals from 

neighboring sites compete for the common resources and hence 

the payoff calculation for individuals residing in a patch does not 

depend solely on the local population configuration but also on 

the weighted average of the frequencies of the morphs in a cer- 

tain neighborhood of the site. We would like to remark that there 

is a vast literature on individual based models of evolutionary spa- 

tial games taking nonlocal payoff calculation in a neighborhood of 

a spatial location into account (see, for example, pioneering stud- 

ies by Nowak and May (1992) and Nowak et al. (1994) ). The second 

major component of fitness calculation is related to the intensity of 

selection w , a parameter determining the strength of payoffs com- 

pared to the baseline fitness. As Ohtsuki and Nowak (2006) point 

out simple as well as illuminating results arise in the limit of weak 

selection, w � 1. This is also the case for our model, hence we as- 

sume that the effect of payoffs is small when compared to baseline 

fitness. 

The process considered here is a coupled system of Markov 

chains taking the spatial structure of the environment into account. 

This coupling between these chains is through dispersal and nonlo- 

cal payoff calculation. We find that the mean field dynamics of this 

coupled system of Markov chains is a coupled system of replicator 

equations (CRE). Here, we hypothesized that the magnitude of dis- 

persal probability μ is comparable to that of the small selection 

parameter w � 1. This hypothesis is shown to be a requirement to 

destabilize the ESS of the Hawk–Dove game. In particular, we anal- 

yse this limiting deterministic case near the ESS of the underlying 

Hawk-Dove game and find that small dispersal rate gives rise to 

spatial pattern formation in 1D and 2D spatial regions with peri- 

odic boundaries when the magnitude of the dispersal probability 

is of order O ( w ). We would like to note that spatial pattern for- 

mation is also possible in the strong selection regime. For a brief 

discussion and illustration of these patterns, see Appendix C . 

The emergence of spatial inhomogeneity is related to the non- 

local (or quasi-local) interactions that are shown to be a mecha- 

nism for spatial pattern formation for a number of ecological pro- 

cesses ( Aydogmus, 2015; 2017; Britton, 1989; Doebeli and Killing- 

back, 2003; Genieys et al., 2006; Killingback et al., 2013; Kisdi and 

Utz, 2005; Maruvka and Shnerb, 2006; Utz et al., 2007 ). In these 

earlier works it was shown that the spatial inhomegeniety is due 

to the fluctuating density of a species. Whereas, pattern formation 

in our model describes the fluctuations in the frequencies of the 

morphs due to the fact that replicator equations are used to model 

evolution in phenotype space. 

The structure of this article is as follows: In Section 2 , we give 

a detailed description of our stochastic model and relate it to de- 

terministic meanfield equations. In Section 3 , we perform a linear 

stability analysis of the model and investigate the conditions for 

pattern formation. In Section 4 , we study the pattern formation 

numerically for the nearest neighbor interactions and investigate 

the effects of patch sizes and neighborhood types. Lastly, we dis- 

cuss and summarize our findings in Section 5 . 

2. From coupled Moran process to CRE 

In this section we consider a class of two player symmetric 

games whose payoff matrix is given as follows: 

A B 

A a b 
B c d 

Here we consider a landscape ecology perspective and divide 

the habitat into identical distinct patches each of which contains K 

individuals. Since our aim is to obtain and analyse the mean dy- 

namics of a stochastic model, we assume that K is large. We de- 

note the set of these patches by S . Each site q in the set S has a 

dispersal neighborhood denoted by N 

q . 

Suppose that each individual in the population is either type A 

or B . At each transition time, a site of origin q ∈ S is chosen ran- 

domly, and the following actions take place in order: 

• An individual from the site q is chosen to reproduce according 

to a frequency dependent probability 
• With probability μ, the offspring migrates to one of the neigh- 

bouring sites in N 

q equally likely and replaces a randomly cho- 

sen individual in this site. 
• The offspring replaces a randomly chosen individual from the 

site of origin q with probability 1 − μ. 

Before proceeding to an introduction of our stochastic model, 

we discuss how to take a nonlocal payoff calculation into account. 

Suppose that, for any site q , the frequency of type A individuals at 

time t is given by X 

q (t) := X 

q and denote the vector of these fre- 

quencies by X = (X 

q ) q ∈ S . The payoff calculation is directly related 

to the foraging range of the species denoted by N 

q . For the sake of 

simplicity we suppose that an individual from site q is able to play 

the game with any individual in her site of origin q or one of its 

neighboring sites in N 

q and collects her payoff. Hence the foraging 
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