
Journal of Theoretical Biology 440 (2017) 58–65 

Contents lists available at ScienceDirect 

Journal of Theoretical Biology 

journal homepage: www.elsevier.com/locate/jtbi 

The evolution of host defence to parasitism in fluctuating 

environments. 

Charlotte Ferris ∗, Alex Best 

School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, UK 

a r t i c l e i n f o 

Article history: 

Received 17 July 2017 

Revised 8 November 2017 

Accepted 4 December 2017 

Available online 6 December 2017 

Keywords: 

Adaptive dynamics 

Host-parasite 

Host evolution 

Seasonality 

a b s t r a c t 

Given rapidly changing environments, it is important for us to understand how the evolution of host de- 

fence responds to fluctuating environments. Here we present the first theoretical study of evolution of 

host resistance to parasitism in a classic epidemiological model where the host birth rate varies season- 

ally. We show that this form of seasonality has clear qualitative and quantitative impacts on the evolution 

of resistance. When the host can recover from infection, it evolves a lower level of defence when the am- 

plitude is high. However, when recovery is absent, the host increases its defence for higher amplitudes. 

Between these different behaviours we find a region of parameter space that allows evolutionary bista- 

bility. When this occurs, the level of defence the host evolves depends on initial conditions, and in some 

cases a switch between attractors can lead to different periods in the population dynamics at each of 

the evolutionary stable strategies. Crucially, we find that evolutionary behaviour found in a constant en- 

vironment for this model doesn’t always hold for hosts with highly variable birth rates. Hence we argue 

that seasonality must be taken into account if we want to make predictions about evolutionary trends in 

real-world host-parasite systems. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Given the ubiquity of infectious diseases in natural systems 

there is strong selection pressure on host organisms to evolve 

costly defence mechanisms. A wide range of theoretical work 

has been developed to understand the evolution of host defence 

against parasitism, with much of this work focused on the eco- 

logical/epidemiological feedbacks that drive selection of quantita- 

tive host defence ( van Baalen, 1998; Best et al., 20 08; 20 09; Boots 

and Bowers, 1999; 2004; Boots and Haraguchi, 1999; Carval and 

Ferriere, 2010; M.H., 2006; Miller et al., 20 05; 20 07; Restif and 

Koella, 2003 ). These studies have explored how long-term, stable 

investment in host defence varies with ecological/epidemiological 

parameters, as well as determining the conditions that can lead 

to coexistence of strains through evolutionary branching. However, 

the vast majority of these studies assume that the populations 

live in a temporally static environment. In reality, almost all nat- 

ural systems are subject to some degree of temporal environmen- 

tal heterogeneity, in particular fluctuations caused by seasonality. 

For example, many natural species exhibit seasonal reproductive 

strategies driven by regular environmental fluctuations ( Furness, 

2016; Ketterson et al., 2015; Rowan, 1938; Stawski et al., 2014 ). It 
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is therefore essential that we consider the impact of fluctuating 

environmental conditions on the evolution of host defences. 

It is well established that variable climates affect ecological sys- 

tems ( Ewing et al., 2016 ), including the spread and impact of dis- 

eases ( Altizer et al., 2006; Fine and Clarkson, 1982; Finkenstädt 

and Grenfell, 20 0 0 ). Many theoretical studies have considered the 

effects of seasonality in purely epidemiological models (i.e., non- 

evolutionary), often through a periodic transmission rate ( Aron and 

Schwartz, 1984; Olsen and Schaffer, 1990; Schwartz and Smith, 

1983 ). Increasing the amplitude of the transmission rate can gener- 

ate sub-harmonic oscillations or cause the population dynamics to 

move through a series of period-doubling bifurcations, eventually 

leading to chaotic dynamics ( Childs and Boots, 2010; Grassly and 

Fraser, 2006; Greenman et al., 2004; Grossman, 1980; Schwartz 

and Smith, 1983 ). Small perturbations in these seasonal models 

can also trigger the system to switch between distinct attractors, 

often due to resonance, potentially leading to significant changes 

in the population dynamics and different patterns of outbreaks 

( Greenman et al., 2004; Kamo and Sasaki, 2002; Keeling et al., 

2001; Schwartz, 1985; Smith, 1983 ). These complex dynamics have 

been found to exist less frequently when seasonality is assumed to 

occur in the host birth rate rather than transmission ( Begon et al., 

2009; Dorélien et al., 2013; Duke-Sylvester et al., 2011; Peel et al., 

2014; White et al., 1996 ). Predictions about the impact of a disease 

are likely to be more accurate when either of these types of sea- 
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sonality are included in the model ( Kamo and Sasaki, 2002; White 

et al., 1996 ). 

There is an increasing appreciation of the importance of tem- 

poral heterogeneity in host-enemy interactions within the exper- 

imental evolution literature ( Blanford et al., 2003; Friman and 

Laakso, 2011; Harrison et al., 2013; Hiltunen et al., 2012 ), for ex- 

ample showing that rapidly fluctuating environments constrain co- 

evolutionary arms races in a bacteria-phage system ( Harrison et al., 

2013 ). Theoretically, however, evolution and seasonality have rarely 

been studied together in a host-parasite context. The few studies 

that do exist have either investigated evolution of only the para- 

site ( Donnelly et al., 2013; Koelle et al., 2005; Sorrell et al., 2009 ), 

or used a genetic-based, rather than ecology-driven, model for evo- 

lution of the host ( Nuismer et al., 2003 and Mostowy and Engel- 

städter, 2011 , but see Poisot et al., 2012 ). Seasonality in the host’s 

birth rate does not affect the evolution of the parasite’s transmis- 

sion/virulence strategy unless a density-dependence is applied to 

virulence (parasite-induced mortality) ( Donnelly et al., 2013 ). This 

occurs because the average susceptible density, and therefore the 

parasite fitness, doesn’t depend on the seasonal parameters unless 

this density-dependence is included. Elsewhere, step-wise environ- 

mental variation implemented through a dynamic resource was 

found to change the coevolutionary outcomes in a gene-for-gene 

based host-parasite system ( Poisot et al., 2012 ). In particular, they 

found that both the host and parasite invest more in resistance 

and infectivity respectively for higher amplitudes in the seasonal- 

ity. However, we currently have no theory specifically addressing 

the impact that seasonality has on the evolution of host defence 

to parasitism. 

Here we investigate the impact of a continuous seasonal birth 

rate on the evolution of quantitative host avoidance through small 

mutation steps using an evolutionary invasion (adaptive dynam- 

ics) method. We use a classic SIS (Susceptible-Infected-Susceptible) 

model, and focus on how the amplitude and period of the imple- 

mented seasonality impacts the ecological/epidemiological dynam- 

ics, and therefore the evolution of the host. 

2. Methods 

The population is modelled using an SIS (susceptible-infected- 

susceptible) framework with the following set of ordinary differen- 

tial equations: 

dS 

dt 
= a (1 − qN) S − bS − βSI + γ I, (1) 

dI 

dt 
= βSI − (b + α + γ ) I, (2) 

where S and I are the susceptible and infected population sizes re- 

spectively, and N = S + I is the total population size ( Anderson and 

May, 1981 ). All offspring are born susceptible at rate a , and only 

susceptible hosts are able to reproduce, i.e. the parasite renders 

the host (temporarily) sterile. The births are limited by density 

with crowding coefficient q , so that birth rate is low when com- 

petition is high. All hosts die at baseline mortality rate b , with an 

additional infected death rate α. The parasite is transmitted to sus- 

ceptible hosts at rate βI due to contact with infected individuals. 

Hosts recover from the parasite at rate γ and return to the suscep- 

tible class with no acquired immunity. Default parameter values 

are given in Table 1 . 

We assume that seasonality occurs on the ecological timescale, 

so to incorporate this we let the birth rate depend periodically on 

time t : 

a = a (t) = a 0 (1 + δ sin (2 πt/ε)) , (3) 

where a 0 is the average birth rate, δ ∈ [0, 1] is the amplitude and 

ε > 0 is the period of the forcing. Periodic birth rates have been ob- 

Table 1 

Parameter definitions and default values. 

Parameter Definition Default value 

ˆ a 0 Trade-off coefficient in the average birth rate 108 

p Trade-off coefficient in the average birth rate 103.75 

c Trade-off coefficient in the average birth rate 1.5 

β Transmission coefficient Varies 

βmin Minimum transmission coefficient 0.5 

βmax Maximum transmission coefficient 10 

δ Amplitude of the birth rate forcing Varies 

ε Period of the birth rate forcing 1 

q Crowding coefficient acting on births 0.1 

b Baseline mortality rate 1 

γ Recovery Rate Varies 

α Virulence/additional death rate due to parasite 1 

served in a large number of species ( Ketterson et al., 2015; Rowan, 

1938 ), and this type of function has been used many times to 

model a time-varying birth rate ( Donnelly et al., 2013; Dorélien 

et al., 2013; He and Earn, 2007 ) or transmission rate ( Childs and 

Boots, 2010; Grassly and Fraser, 2006; Schwartz and Smith, 1983 ). 

For our default parameter values, the period ε is the same as the 

average lifespan b (1 year), but see Section 3.4 for varying ε or 

Appendix F for alternative b . 

We assume that the host evolves defence through the transmis- 

sion coefficient (avoidance) β . We let the average birth rate depend 

on this as a trade-off so that there is a cost to resisting the para- 

site, as there is experimental support for such a relation to exist 

( Boots and Begon, 1993 ). We use the following trade-off function 

based on that used by White et al. (2006) : 

a 0 = a 0 (β) = 

ˆ a 0 − p 

(
1 + 

β−βmin 

βmax −βmin 

)
(
1 + c β−βmin 

βmax −βmin 

) , (4) 

where ˆ a 0 > 0 , 0 < p < ˆ a 0 , c > 1 and β ∈ [ βmin , βmax ]. a 0 ( β) has 

minimum ˆ a 0 − p, and parameters p, c determine the gradient and 

curvature of the trade-off, which needs to have positive gradient: 

as the host invests in defence against the parasite ( β decreases), 

less can be invested in reproduction ( a 0 ( β) decreases) ( Boots and 

Haraguchi, 1999; Geritz et al., 2007 ). The constraints on the trade- 

off parameters give accelerating costs of defence, so that it is 

more costly to invest in resistance when defence is already high (
d 2 a 0 (β) 

dβ2 < 0 

)
, see figure A.1 in Appendix A. Accelerating trade-offs 

generally lead to evolutionary attractors ( Hoyle et al., 2008 ), which 

will be our focus here. 

We use the adaptive dynamics method to study evolution of the 

host in the transmission coefficient β . The method involves adding 

a rare mutant with susceptible and infected population sizes S m 

, I m 

and transmission coefficient βm 

very close to the resident trans- 

mission coefficient β . We assume that mutants occur infrequently 

so that the resident population reaches the dynamic attractor of 

the population dynamics (generally a limit cycle here) before the 

next mutant is introduced ( Geritz et al., 1998 ). When a new mu- 

tant arises, it is rare compared to the current population, so we 

assume that the resident remains at its limit cycle as long as the 

mutant population is small ( Geritz et al., 1998 ). To analyse how 

the host evolves, we consider the mutant’s fitness, defined to be 

the long-term exponential growth rate of the mutant in the cur- 

rent environment ( Metz et al., 1992 ). 

In the case where γ = 0 , the fitness is relatively simple to find. 

We no longer have infected mutants (they are absorbed into I ), 

and we can read off the time-varying growth rate r ( t ) of the mu- 

tant host from the linearisation of the equation for the susceptible 

mutant ( d S m 

/d t = r(t) S m 

, see Appendix B). Following the method 

from Donnelly et al. (2013) , we can then take the average of this 
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