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a b s t r a c t 

Many discrete models of biological networks rely exclusively on Boolean variables and many tools and 

theorems are available for analysis of strictly Boolean models. However, multilevel variables are often 

required to account for threshold effects, in which knowledge of the Boolean case does not generalise 

straightforwardly. This motivated the development of conversion methods for multilevel to Boolean mod- 

els. In particular, Van Ham’s method has been shown to yield a one-to-one, neighbour and regulation pre- 

serving dynamics, making it the de facto standard approach to the problem. However, Van Ham’s method 

has several drawbacks: most notably, it introduces vast regions of “non-admissible” states that have no 

counterpart in the multilevel, original model. This raises special difficulties for the analysis of interaction 

between variables and circuit functionality, which is believed to be central to the understanding of dy- 

namic properties of logical models. Here, we propose a new multilevel to Boolean conversion method, 

with software implementation. Contrary to Van Ham’s, our method doesn’t yield a one-to-one transpo- 

sition of multilevel trajectories; however, it maps each and every Boolean state to a specific multilevel 

state, thus getting rid of the non-admissible regions and, at the expense of (apparently) more compli- 

cated, “parallel” trajectories. One of the prominent features of our method is that it preserves dynamics 

and interaction of variables in a certain manner. As a demonstration of the usability of our method, we 

apply it to construct a new Boolean counter-example to the well-known conjecture that a local negative 

circuit is necessary to generate sustained oscillations. This result illustrates the general relevance of our 

method for the study of multilevel logical models. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Background 

Boolean models have proved very useful in the analysis of var- 

ious networks in biology. However, it is often convenient to in- 

troduce multilevel variables to account for multiple threshold ef- 

fects. We are often faced with choices between using Boolean vari- 

ables or multilevel variables. This can be crucial since theoretical 

results are sometimes proved only for Boolean or multilevel net- 

works. A particular example of this situation is in René Thomas’ 

conjecture that a local negative circuit is necessary to produce sus- 

tained (asynchronous) oscillations. This paper stems from the sim- 

ple idea that a Boolean counter-example to that conjecture could 

be found by transposing a multilevel counter-example found ear- 

lier by Richard and Comet. However, we believe the method devel- 

oped in this paper, together with a handy script which implements 

it, is widely applicable to other theoretical studies which involves 
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discrete networks. We also find the notion of asymptotic evolution 

function defined in this paper sheds light on the understanding 

of relation between the state transition graph and the interaction 

graph. 

1.1. Introduction 

Introduced in the 1960s-70s to model biological regulatory net- 

works , the logical (discrete) formalism has gained increasing pop- 

ularity, with recent applications as diverse as drosophila de- 

velopment, cell cycle control, or immunology (see Abou-Jaoudé

et al. (2016) for a survey). While many of these models rely ex- 

clusively on Boolean variables, it is often useful to introduce mul- 

tilevel variables to account for more refined behaviour. However, 

many tools and theoretical results are restricted to the Boolean 

case (see e.g. Stoll et al. (2012) , MacNamara et al. (2012) and 

Helikar et al. (2012) ) This situation motivated the development of 

methods to convert multilevel models to Boolean ones ( Remy et al., 

2006; Van Ham, 1979 ). A simple idea for such a conversion was 

introduced by Van Ham (1979) , and this method has been shown 

to be essentially the only one that could provide a “one-to-one, 
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neighbour and regulation preserving map” ( Didier et al., 2011 ). One 

problem with the conversion is that the resulting Boolean model 

is defined only on a sub-region of the whole Boolean state space, 

called the admissible region , and how to extend the model outside 

that region is not trivial. This leads to potential problems with 

analytical tools designed to deal with the whole state space, as 

a property that is true in the restricted domain may be false on 

the whole state space, and vice versa. The primary goal of the 

present paper is to address this issue by introducing an extension 

of Van Ham’s method. More precisely, we introduce a new method 

for multilevel to Boolean model conversion which extends the do- 

main of Van Ham’s model to the whole state space while preserv- 

ing edge functionality and, therefore, local circuits. Our mapping 

yields a state transition graph with “parallel” trajectories that con- 

tains the one obtained by Van Ham’s mapping as a sub-graph in 

such a way that attractors of the dynamics are preserved. 

We apply our method to investigate a particular class of theo- 

retical results that connect the asynchronous behaviour of a model 

to the presence of regulatory circuits in the interaction graph. In the 

early 1980s, R. Thomas conjectured that the presence of a positive 

circuit ( i.e. a circuit where each component directly or indirectly 

has a positive effect upon itself) in the interaction graph is a nec- 

essary condition for multi-stability, and a negative circuit (where 

each component has a negative effect upon itself) is necessary for 

sustained oscillations ( Thomas, 1981 ). One particular formulation 

of the conjecture focuses on local or “type-1” circuits ( Comet et al., 

2013 ), i.e. circuits whose arcs are all functional in the same single 

point of the system’s state transition graph – as opposed to global 

circuits whose arcs may be functional anywhere. While the conjec- 

ture holds for positive circuits both at the global and local levels, 

and for multilevel as well as Boolean models ( Remy et al., 2008; 

Richard and Comet, 2007 ), in the negative case the conjecture 

could only be proved true at the global level ( Remy et al., 2008 ). At 

the local level, a counter-example has first been published for mul- 

tilevel models ( Richard, 2010 ), while the Boolean case remained 

open ( Comet et al., 2013 ) until a Boolean counter-example was 

eventually discovered ( Ruet, 2017 ), showing that contrary to expec- 

tations, a local negative circuit was not necessary to generate sus- 

tained oscillations. Interestingly, the approaches taken by P. Ruet 

and A. Richard are rather different, and their counter-examples 

have little in common. Applying our method to the Richard-Comet 

multilevel counter-example, we obtain a new Boolean counter- 

example to the conjecture that a local negative circuit is necessary 

to produce sustained oscillations. 

1.2. Definitions 

1.2.1. Evolution function and state transition graph 

We work within the generalised logical framework introduced 

by René Thomas and collaborators ( Thomas and D’Ari, 1990 ); see 

Abou-Jaoudé et al. (2016) for a recent review. Here, we introduce 

the notation we use throughout this paper. Fix positive integers 

n and m i (1 ≤ i ≤ n ). Consider a system consisting of mutually in- 

teracting n genes, indexed by the set I = { 1 , 2 , . . . , n } . Each gene 

a i takes expression levels in the integer interval { 0 , 1 , . . . , m i } . The 

state of the system evolves depending on the current state. This 

leads to a discrete dynamical system represented by a evolution 

function over M 

f = ( f 1 , f 2 , . . . , f n ) : M → M, 

where M = { (x 1 , . . . , x n ) | x i ∈ { 0 , 1 , . . . , m i } } . As a special case 

when m i = 1 for all i ∈ I , we denote M = B 

n with B = { 0 , 1 } and call 

the system Boolean . A basic question asks what we can tell about 

the asymptotic global behaviour of the dynamics, which is encoded 

in the state transition graph , from local data of f , which are encoded 

in the partial derivatives of f or the interaction graph . 

The evolution of the whole system can be formally modelled 

by a certain kind of directed graph on M . We equip M with the 

usual metric d(x, x ′ ) = 

∑ n 
i =1 | x i − x ′ 

i 
| for x, x ′ ∈ M . Denote by e 1 = 

(1 , 0 , 0 , . . . ) , e 2 = (0 , 1 , 0 , 0 , . . . ) , etc. the coordinate vectors of M . A 

grid graph � over M is a graph with the vertex set M satisfying that 

• each directed edge connects a pair of vertices of distance one 
• at each vertex x there are no two parallel outward edges; that 

is, x − e j ← x → x + e j is not allowed. 

The state of the whole system is represented by the levels of 

genes, and corresponds to a vertex in �. At each time step, the 

state evolves to one of its neighbouring vertices connected by an 

arrow in the following way. To an evolution function over M , we 

associate a grid graph �( f ) over M called the (asynchronous) state 

transition graph with the edge set ⎧ ⎨ ⎩ 

(x 1 , x 2 , . . . , x j , . . . , x n ) → (x 1 , x 2 , . . . , x j + δ, . . . , x n ) , 

δ = 

{
−1 ( f j (x ) < x j ) 
+1 ( f j (x ) > x j ) 

}
. (1) 

Note that here we follow the standard convention that transition 

of states is unitary (see (Richard, 2010, §4) ) so that the existence 

of an edge x → x ′ implies d(x, x ′ ) = 1 ; that is, at each step the level 

of a single gene changes at most by one. 

Asymptotic behaviour of the evolution of a system can be cap- 

tured in a graph theoretical entity of the state transition graph. 

An attractor is a terminal strongly connected sub-graph of �; that 

is, any two elements of it are connected by a path and there is 

no edge from its elements to one in the complement. An attrac- 

tor consisting of a single vertex is called a stable state , otherwise 

it is called a cyclic attractor . Intuitively, attractors are domains in �

in which the system eventually resides; there is no way to escape 

once the system arrives in it, but each state in the domain can be 

visited after arbitrarily many steps. 

1.2.2. Interaction graph and circuit functionality 

A common practice in analysing interactions among genes in a 

network is to encode it in the form of a labelled directed graph 

called the interaction graph, where interaction is measured by the 

partial derivatives of the evolution function f = ( f 1 , f 2 , . . . , f n ) : 

M → M. 

The forward partial derivative of f i along the j th coordinate at 

x = (x 1 , . . . , x n ) with x j < m j is defined by 

∂ + 
j 

f i (x ) = f i (x 1 , . . . , x j + 1 , . . . , x n ) − f i (x 1 , . . . , x j , . . . , x n ) 

= f i (x + e j ) − f i (x ) . 

The backward partial derivative along the j th coordinate at x with 

x j > 0 is defined similarly by 

∂ −
j 

f i (x ) = f j (x 1 , . . . , x j , . . . , x n ) − f j (x 1 , . . . , x j − 1 , . . . , x n ) 

= f i (x ) − f i (x − e j ) . 

Partial derivatives ∂ + 
j 

f i (x ) and ∂ −
j 

f i (x ) are non-trivial when the i th 

gene’s target value changes along the change of the j th gene. They 

encode the dependence between genes locally at the state x ∈ M . 

Remark 1. For a Boolean network, only one of the forward or the 

backward partial derivative exists at each x , so we just put them 

together to define the ordinary partial derivative denoted by ∂ j . 
On the other hand, in multilevel case, we have both the forward 

and the backward partial derivatives at some x . It is important to 

consider both of them (c.f. (Richard, 2010, Definition 8) ). 

Definition 1. The (local) interaction graph Gf ( x ) of f at x is a graph 

over the vertex set I such that there exists an edge from j to i 

• with label “ + ” if ∂ + 
j 

f i (x ) > 0 or ∂ −
j 

f i (x ) > 0 

• with label “ − “ if ∂ + 
j 

f i (x ) < 0 or ∂ −
j 

f i (x ) < 0 . 



Download English Version:

https://daneshyari.com/en/article/8876851

Download Persian Version:

https://daneshyari.com/article/8876851

Daneshyari.com

https://daneshyari.com/en/article/8876851
https://daneshyari.com/article/8876851
https://daneshyari.com

