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a b s t r a c t 

A deterministic compartmental model is developed for examining the dynamics of digesta marker out- 

flows in animals, focussing on models which will simulate bimodal kinetics with two peaks in the time 

course of marker outflow. 

First, to establish the background to the subsequent modelling of bimodal flow, we examine the com- 

partmental scheme which gives rise mechanistically to the gamma function, and derive or describe var- 

ious useful properties. This is illustrated by varying two key parameters of the gamma function, n (the 

number of compartments), and k (the rate constant for compartment emptying). 

Next, a more articulated compartmental scheme is constructed, and by progressive parameter changes, 

it is shown how bimodal faecal marker outflow can be achieved. 

Last, progressive simplification is applied to this scheme to arrive at what is (hopefully) the simplest 

compartmental scheme which can be used to simulate bimodal kinetics. This may be used mechanisti- 

cally to describe the role of digesta flow in animals which exhibit such characteristics. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Digesta marker fluxes in animal faeces have been used as a tool 

for studying aspects of animal nutrition and growth for many years 

(e.g. Thornley and France, 2007 , pp. 547–553). In many ruminants, 

after a pulse dose of marker, output marker flux can be described 

by a simple linear compartment model of the type that gives rise 

to gamma-function behaviour ( Thornley and France, 2007 , pp. 818 

– 822). Here the rate of appearance of marker plotted against time 

variable, t , exhibits one maximum, whose height and position in 

time can be varied by the two parameters defining the gamma 

function: the number of compartments and the rate constant be- 

tween the compartments. However, some ruminants exhibit kinet- 

ics which are not easily fitted by a single-maximum gamma func- 

tion, and may require a more articulated representation. Here we 

use a series of three linked compartments to generate a range of 

kinetic responses varying from a single maximum to bimodal with 

two maxima. 

Compartment models have long been used to study digestion 

in ruminating animals (e.g. Blaxter et al., 1956; France et al., 1985; 

Pond et al., 1988 ) and non-ruminants such as fish, horses and 

swine (e.g. Boyce et al., 20 0 0; Rosenfeld et al., 20 06; Wilfart et al., 

2007 ). They continue to be used to study different aspects of the 
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processes involved. Adeleye et al., (2016 , Fig. 2) give some re- 

sults that cannot be accommodated using traditional approaches, 

although they do not comment on this. Several authors describe 

data which could possibly be better fit and understood using equa- 

tions based on the methodology presented in the current paper: 

e.g. Matsuda et al., (2015 , Figs. 1 and 2), Hammond et al., (2014 , 

Fig. 1), Schwarm et al., (2009 , Fig. 1), Sanaka et al., (2005 , Fig. 2), 

Wyse et al., (2001 , Fig. 6), and Sakaguchi et al., (1987 , Fig. 1a, who 

also say “No equation could be fitted to the time-course changes 

for the excretion of Co, …). In 1983, Cork and Warner (1983 , p. 43), 

when examining passage through the gut of the koala, suggested 

that “this caused the particulate marker to distribute in two pools 

situated in parallel producing a marker excretion curve different 

from that reported in any other mammals.”

The objective of the work presented here is pedagogic: to con- 

struct a transparent flexible mechanistic compartment model of 

the digestive tract which can be easily extended and can be used 

to simulate various forms of marker outflow kinetics, including bi- 

modal time responses. 

2. Modelling 

First we describe the linear compartment model that gives rise 

to the gamma function in some detail, because this provides the 

essentials for understanding the subsequent bimodal analysis. 
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Fig. 1. Compartmental scheme with n compartments with outflows, labelled y 1 , y 2 , 

…, y n , with a final compartment, z . A single rate constant, k (h −1 ), applying to all 

compartments giving rise to the gamma function, γ ( t, n, k ), as the outflow rate 

from the n th compartment, ky n [Eq. (3)] . At time t = 0 h, y 1 = 1 (mg marker, say) 

and y i , i > 1 = 0, z = 0. 

2.1. Gamma function and gamma distribution 

Fig. 1 shows a scheme which generates the gamma function. 

Following Thornley and France (2007 , pp. 818–822), the differential 

equations for Fig. 1 are 

d y 1 
d t 

= −ky 1 , 
d y 2 
d t 

= ky 1 − ky 2 , ..., 
d y n 

d t 
= ky n −1 − ky n , 

d z 

d t 
= ky n , (1) 

with at t = 0 h : y 1 = 1 , y 2 = y 3 = ... = y n = z = 0 . 

Time t (h) is the independent variable. Eq. (1 ) have two pa- 

rameters, n , the number of compartments, and the rate constant 

k (h 

-1 ). 

Solving Eq. (1) sequentially, therefore gives 

y 1 = e −kt , y 2 = kt e −kt , y 3 = 

(kt) 
2 

2! 
e −kt , ..., y n = 

k n −1 t n −1 

( n −1) ! 
e −kt . 

(2) 

The gamma function, γ ( t, n, k ), can be identified with the out- 

flow rate, O n , from the n th compartment, i.e., k × y n of the above 

Eq. (2) to give: 

γ (t, n, k ) = O n = k y n = 

k n t n −1 

( n −1) ! 
e −kt . (3) 

The dimensions of γ ( t, n, k ) are time -1 or in our case h 

-1 . This 

is normalized so that ∫ ∞ 

0 

O n d t = 

∫ ∞ 

0 

γ (t, n, k )d t = 

∫ ∞ 

0 

k n t n −1 

(n − 1)! 
e −kt d t = 1 . (4) 

The incomplete gamma function, �( t, n, k ), is obtained by stop- 

ping the integration at time, t : 

�(t, n, k ) = 

∫ t 

0 

O n d t = 

∫ t 

0 

γ (t, n, k )d t = 

∫ t 

0 

k n t n −1 

(n − 1)! 
e −kt d t. (5) 

The gamma function γ ( t, n, k ) [Eq. (3)] has mean t , 〈 t 〉 (h), 

mean t squared, 〈 t 2 〉 (h 

2 ), variance of t, σ 2 (h 

2 ), standard devia- 

tion t sd (h), mode t max (h, time t where γ is a maximum), value of 

γ at time t = t max (h 

-1 ) (the mode) and coefficient of variation (CV) 

given by 

< t > = 

n 

k 
, < t 2 > = 

n ( n + 1 ) 

k 2 
, σ 2 = < t 2 > − < t > 

2 = 

n 

k 2 
, 

t sd = σ = 

n 

1 
2 

k 
, 

t max = 

n − 1 

k 
, γ ( t max , n, k ) = 

k ( n − 1 ) 
n −1 

( n − 1 ) ! 
e −( n −1 ) , 

and CV = 

t sd 

< t > 

= 

1 √ 

n 

. (6) 

Fig. 2 illustrates some of the principal properties of linear com- 

partments models (as in Fig. 1 ) in relation to the gamma func- 

tion, γ ( t, n, k ) ( Eq. (3) ). Increasing n makes for increasing spikiness 

Fig. 2. Time plots of A the gamma function γ ( t, n, k ) [Eq. (3)] , and B the integrated (incomplete) gamma function �( t, n, k ) of Eq. (5) . The simulations have been performed 

for increasing values of n , the number of compartments ( Fig. 1 ). The rate constant k ( Fig. 1 ) is simultaneously increased so that the mean value 〈 t 〉 [Eq. (6)] remains constant 

at n / k = 10 h. 

Fig. 3. Time plots of A the gamma function γ ( t, n, k ) of Eq. (3) , and B the integrated gamma function �( t, n, k ) of Eq. (5) . The simulations have been performed for increasing 

values of n (the number of compartments ( Fig. 1 ) with rate constant k ( Fig. 1 ) constant at k = 1 h -1 , so that the mean value 〈 t 〉 = n / k [Eq. (6)] increases to n / k = n h. 



Download English Version:

https://daneshyari.com/en/article/8876883

Download Persian Version:

https://daneshyari.com/article/8876883

Daneshyari.com

https://daneshyari.com/en/article/8876883
https://daneshyari.com/article/8876883
https://daneshyari.com

