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a b s t r a c t 

The Wright–Fisher model is the most popular population model for describing the behaviour of evolu- 

tionary systems with a finite population size. Approximations have commonly been used but the model 

itself has rarely been tested against time-resolved genomic data. Here, we evaluate the extent to which 

it can be inferred as the correct model under a likelihood framework. Given genome-wide data from an 

evolutionary experiment, we validate the Wright–Fisher drift model as the better option for describing 

evolutionary trajectories in a finite population. This was found by evaluating its performance against a 

Gaussian model of allele frequency propagation. However, we note a range of circumstances under which 

standard Wright–Fisher drift cannot be correctly identified. 

© 2017 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Rapid advances in high-throughput methodologies have en- 

abled the collection of rich time-series from experimental evolu- 

tion studies. These typically address the effects of environmen- 

tal conditions on adaptation stemming from de novo mutations 

( Barrick and Lenski, 2013 ), initial variance induced by a genetic 

cross ( Bergström et al., 2014; Culleton et al., 2005; Mancera et al., 

2008 ) or simply from the standing variation characterizing a poly- 

morphic starting population ( Schlötterer et al., 2014 ). Sequencing 

the emerging populations during these types of experiments al- 

lows for identification of molecular aspects behind the species’ re- 

productive success. 

Despite advances in the field, a challenge remains regarding the 

optimal approach for identifying loci under selection given time- 

resolved genomic data. Due to linkage disequilibrium, selection 

at a single locus can lead to changes in allele frequencies across 

multiple loci ( Hill and Robertson, 1966 ), confounding single-locus 

approaches to the inference of selection ( Illingworth and Musto- 

nen, 2011 ). Further, in smaller populations, genetic drift may have 

a significant impact upon allele frequencies, such that the influence 

of selection must be distinguished from stochastic effects, arising 

from both propagation and sampling ( Charlesworth, 2009; Jónás 

et al., 2016; Jorde and Ryman, 2007 ). 
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A variety of methods have been proposed for inferring selection 

in time-series under genetic drift, utilising the Wright–Fisher drift 

model for forward propagation ( Ewens, 2012 ), approximations to 

the Wright–Fisher model ( Feder et al., 2014; Lacerda and Seoighe, 

2014; Tataru et al., 2015; Terhorst et al., 2015; Topa et al., 2015; 

Waxman, 2011 ), its diffusion limit ( Bollback et al., 2008 ) and re- 

spective spectral decomposition approaches ( Song and Steinrücken, 

2012; Steinrücken et al., 2014 ), or effective simulation methods 

( Foll et al., 2015; Malaspinas, 2016 ). Recently, an accurate beta ap- 

proximation has also be shown to model important features at the 

absorbing boundaries which, otherwise, would not be easily at- 

tainable ( Tataru et al., 2015 ) (see also Tataru et al. (2016) for an 

extensive review of other methods). However, while the Wright–

Fisher model has become the standard approach to representing 

genetic drift, it is built upon certain modelling assumptions, in- 

cluding the replacement of the entire population in successive gen- 

erations. As such, other models may in some respects provide a 

better fit to the dynamics observed in evolutionary experiments 

( Der et al., 2011 ). Experimental demonstrations intended to vali- 

date the Wright–Fisher model have suffered from limitations in the 

extent of data available for analysis ( Buri, 1956; Der et al., 2011 ). 

Here, we evaluate the extent to which a Wright–Fisher model 

of genetic drift can be inferred from data pertaining to evolu- 

tionary trajectories, contrasting it with a model of Gaussian dif- 

fusion. The Gaussian model at first sight differs greatly from the 

Wright–Fisher model, lacking frequency-dependent variance, albeit 

we note that, when compounded with the effect of finite sam- 

pling, frequency-dependent variance does arise in the Gaussian 
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model. A further contrast is noted in the computational efficiency 

of the algorithms; the Gaussian model is analytically solvable, al- 

lowing for rapid evaluation, whereas the Wright–Fisher model is 

more computationally intensive. We test the extent to which a 

model of drift is identifiable from simulated allele frequency data 

and a large dataset from evolutionary experiments conducted in 

Drosophila melanogaster ( Franssen et al., 2015; Orozco-terWengel 

et al., 2012 ). We note that correct inference of a Wright–Fisher 

model is not always possible from simulated Wright–Fisher data, 

with various parameters influencing model identifiability. However, 

data from evolutionary experiments shows evidence in favour of a 

Wright–Fisher drift model under a likelihood-based inference ap- 

proach. 

2. Results 

The potential to correctly identify a model of drift was evalu- 

ated using a Hidden Markov Model with an independent emission 

component, based on a version of the Kalman filter ( Barber, 2012; 

Fischer et al., 2014 ). In general terms, we represented the fre- 

quency of an allele as a probability distribution, propagated at each 

generation, and observed via a finite sequencing process. Our emis- 

sion model thus represents a form of uncertainty equivalent to that 

arising from evolutionary experiments that have used the Pool-Seq 

paradigm ( Kofler et al., 2012 ). Given Gaussian and Wright–Fisher 

models of propagation, their relative fit to the data was evaluated 

using a compound log-likelihood difference, with optimal parame- 

ters identified by a standard non-linear optimization technique. 

In order to test our ability to infer correct parameters from 

simulated data, given the combination of the drift model with 

an emission component, we tested our model against 2 batches 

of simulations covering several population sizes and variances for 

the Wright–Fisher and the Gaussian model respectively. Fig. 1 , 

shows that accurate parameter inference was achieved under each 

drift model. At large population sizes (or smaller variances), the 

expected rate of change in an allele frequency declines, so that 

a longer period of observation, represented by T , the trajectory 

length, was required to estimate N (or σ G ) to a high level of ac- 

curacy. Given 300 generations of data, accurate estimates of N or 

σ G were obtained from all simulated populations (see Supporting 

Text for consideration of the effect of the number of trajectories on 

inferred parameters). 

Given sufficient data generated from a pure Wright–Fisher or 

Gaussian model of drift, correct identification of the drift model 

could be achieved. However, a threshold time, sometimes of 300 

generations or more, was required for this to be achieved ( Fig. 2 ). 

We tested a diverse set of simulated data with several represen- 

tative parameters of typical E& R experiments ( Kofler and Schlt- 

terer, 2014 ): sequencing depth, sampling period, initial allele fre- 

quency, experimental duration and population size. The underly- 

ing population size of the system, N , was a critical factor in de- 

termining the threshold for identification; at higher N , the change 

via drift may be insufficient for model discrimination. Further fac- 

tors influenced this value; for example, trajectories starting at 

lower frequencies were more informative of the drift model due 

to increased frequency dependence, reflected, for example, in the 

derivative of the characteristic variance. At frequency values closer 

to the boundaries, q (t) = 0 and q (t) = 1 , the importance of higher- 

order moments characterizing the Wright–Fisher model are also 

a strong contributing factor. An increased depth and frequency 

of sampling increased the extent of information available for in- 

ference; each improved the ability for model discrimination (see 

Fig. 2 and additional results in Supporting Text). 

While the simulations discussed above consider systems in 

which drift is the only force driving evolution, in a biological sys- 

tem, other factors affect allele frequency change. Selection, muta- 

tion, and linkage disequilibrium each influence the shape of the 

expected distribution of allele frequencies with time, potentially 

affecting the identifiability of a model of drift 

Natural selection acting upon a population induces changes in 

allele frequency over time. As such, including selection in our sim- 

ulations led to an increased allele frequency variance in our sim- 

ulation data. Subsequent inference of N under a neutral assump- 

tion led to underestimates of N proportionate to the number of 

loci at which selection acted. However, the correct inference of a 

Wright–Fisher drift model in each case was not compromised (see 

Supporting Information). 

The rate of mutation in experimental systems relevant to our 

work, of close to μ ≈ 10 −9 ( Li and Stephan, 2006 ), has an influ- 

ence on allele frequencies much smaller than the effect of ge- 

netic drift. To explore the theoretical effect of mutation, simula- 

tions were conducted with much higher rates of mutation. From 

simulated data, population sizes were over-estimated if the start- 

ing frequency was 0.1 and μN = 0 . 1 or 0.5, and under-estimated 

if μN = 1 or 10 (see also Supplementary Information). At low fre- 

quencies, the influence of mutation led to incorrect model identi- 

fication; the Gaussian distribution describes with greater flexibility 

the sample paths generated by the balance between drift, which 

pushes trajectories towards either of the absorbing boundaries, and 

mutation, which drives the frequency spectrum away from a fre- 

quency of 0 or 1. Where μN is sufficiently high, drift is overcome 

by the tendency of mutation to push frequencies to q (t) = 0 . 5 . 

Considering simulations with a starting frequency of 0.5, consis- 

tent overestimates of N were obtained to compensate for the ef- 

fect of mutation keeping the allele frequency close to a constant 

value. However, in these cases, the Wright–Fisher model was cor- 

rectly identified in comparison to the Gaussian drift model. 

The presence of linkage disequilibrium between loci may act 

as a confounding factor for selection identification. Yet, for model 

identifiability without selection, hitch-hiking effects should only 

have a significant impact if the number of founding haplotypes is 

reduced or if the size of genomes is small ( Franssen et al., 2015; 

Terhorst et al., 2015 ). Under these conditions, a random bias in 

allele frequency change may be observed, leading to possible in- 

correct model identification. For the simulated genomes under a 

neutral coalescent model employed here (see Methods), propaga- 

tion with linkage, even for a low number of founding haplotypes, 

did not lead to incorrect drift model identification. Population sizes 

for these datasets were slightly over-estimated (see Supplementary 

Information). 

Applying the model to experimental genomic data 

( Franssen et al., 2015 ), an improved fit was not seen for the 

Wright–Fisher model across all statistical measures considered 

(see Supporting Text, where the error in the estimated compound 

variance is evaluated). However, a clear result in favour of this 

model was seen via a likelihood calculation. Estimated popula- 

tion sizes calculated under the Wright–Fisher model are shown 

in Fig. 3 (A). Consistent with the identification of selection in 

the data ( Franssen et al., 2015 ), these estimates are lower than 

the reported consensus size of 10 0 0. Further calculations were 

performed to evaluate models of drift over the subset of loci in 

all chromosomes that did not reach fixation. This was intended to 

verify whether the improved performance of the Wright–Fisher 

model arose from the natural inclusion of fixation events in this 

drift model; a more artificial approach was required in the case 

of the Gaussian drift model. While average likelihood differences 

for this dataset were reduced, the tendency across chromosomes 

observed in Fig. 3 was not altered. 

In the results of Fig. 3 , differences between the estimates ob- 

tained were observed for different replica datasets. As noted in 

supplementary Fig. F.14, the differences between initial distribu- 

tions is minimal, likely excluding this as an explanation for the 
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