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a b s t r a c t 

Vertex models are generally powerful tools for exploring biological insights into multicellular dynam- 

ics. In these models, a multicellular structure is represented by a network, which is dynamically rear- 

ranged using topological operations. Remarkably, the topological dynamics of the network are important 

in guaranteeing the results from the models and their biological implications. However, it remains unclear 

whether the entire pattern of multicellular topological dynamics can be accurately expressed by a set of 

operators in the models. Surprisingly, vertex models have been empirically used for several decades with- 

out any mathematical verification. In this study, we propose a rigorous two-/three-dimensional (2D/3D) 

vertex model to describe multicellular topological dynamics. To do this, we classify several types of vertex 

models from a graph-theoretic perspective. Based on the classification, mathematical analyses reveal sev- 

eral conditions that enable us to apply the operators accurately without topological errors. Under these 

conditions, the operators can completely express the entire pattern of multicellular topological dynam- 

ics. From these results, we newly propose rigorous 2D/3D vertex models that can be applied to gen- 

eral multicellular dynamics, and we clarify several points to verify the results obtained from previous 

models. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Multicellular dynamics are fundamental to the construction and 

maintenance of tissue and organ structures in multicellular organ- 

isms. In most tissues, individual cells adhere to each other within a 

three-dimensional (3D) geometry with a slight boundary gap. Be- 

cause the gap is negligible, the geometry of such tissues can be ap- 

proximated by the cell packing geometry, where the gap width can 

be zero. Under this geometry, cell–cell boundaries are tensile be- 

cause of cytoplasmic and cytoskeletal activities. Hence, individual 

cell shapes tend to be angulated, especially on the apical area of 

the epithelium. Moreover, under their geometric constraints, cells 

show active behavior such as deformation, migration, division, and 

apoptosis. Therefore, multicellular dynamics are accompanied by 

changes in cellular shape, position, and number under the packing 

geometry. 
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To deal with such multicellular dynamics, vertex models have 

frequently been used over recent decades ( Bielmeier et al., 2016; 

Farhadifar et al., 2007; Fletcher et al., 2014; Honda and Nagai, 

2015; Honda et al., 1982, 2004; Misra et al., 2016 ). Various ex- 

tensions of these models can express aspects of cellular dynam- 

ics such as cellular rearrangement ( Honda et al., 1982; Nagai et al., 

1990; Okuda et al., 2013c ), division ( Farhadifar et al., 2007; Okuda 

et al., 2013b ), and apoptosis ( Monier et al., 2015; Okuda et al., 

2016 ). These expressions are directly described in 3D space, or 

are approximated to two-dimensional (2D) space. This versatile de- 

scription has made it possible to apply the models to various sim- 

plified and realistic phenomena ( Honda et al., 2008 ). In particular, 

over the past few years, several studies have focused on the im- 

portance and applicability of vertex models in enabling a greater 

understanding of multicellular systems ( Fletcher et al., 2013, 2014; 

Honda and Nagai, 2015; Okuda et al., 2015a ). Therefore, vertex 

models are powerful tools for expressing 2D/3D multicellular dy- 

namics. 

Vertex models express multicellular dynamics from both topo- 

logical and physical perspectives. From a topological perspective, 

2D models represent individual cell shapes as a single polygon 

whose vertices and edges are shared by neighboring cells. We re- 
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fer to this topological representation as a cell packing graph (CPG). 

Importantly, the network topology changes dynamically under sev- 

eral topological operators, such as those expressing cell rearrange- 

ments, divisions, and apoptosis ( Farhadifar et al., 2007; Honda 

et al., 1982; Nagai et al., 1990; Okuda et al., 2016, 2013b, 2013c ). 

In addition, from a physical perspective, the spatial quantities of 

edges, surfaces, and volumes are calculated from the vertex po- 

sitions and network topology. Based on these spatial quantities, 

physical parameters such as the gradients of the effective energy 

and molecular density can be calculated ( Fujita et al., 2011; Honda 

et al., 1982, 2004; Okuda et al., 2015c ). Namely, in vertex models, 

the network topology is a hyperparameter of the physical parame- 

ters. 

The dynamic transition process of CPG is important for provid- 

ing results that are physically consistent. First, if the operators are 

irregular (i.e., the network topology is irreversible before and af- 

ter applying an operator), the inherent irreversibility would gener- 

ate some artificial drift in the physical states ( Okuda et al., 2013c ). 

Second, for computational simulations, if topological operators are 

unsound (i.e., they cannot always be applied to the network), the 

computational algorithm may fail, or a part of the network may 

be locked ( Okuda et al., 2013c ). Third, if operators are incomplete 

(i.e., they have inexpressible patterns of CPG dynamics), the phe- 

nomena applicable to the models would be limited. Therefore, to 

ensure that we obtain physically consistent results, the operators 

of vertex models should satisfy the following topological proper- 

ties: 

Reversibility: operators have inverse functions. 

Soundness: operators can be sequentially applied to the network. 

Completeness: operators can express the entire pattern of CPG 

dynamics. 

Although vertex models have been used in the past and will 

continue to be used in the future, there are currently no topolog- 

ical operators that satisfy the reversibility, soundness, and com- 

pleteness requirements. Therefore, in this study, we mathemati- 

cally explore the topological dynamics of vertex models from a 

graph-theoretic viewpoint, and propose a set of regular opera- 

tions that maintains the soundness and whose sequential applica- 

tion ensures completeness. First, we classify several types of vertex 

models with respect to the graph property and operators. Second, 

we mathematically explore the applicable conditions of individual 

operators, and clarify whether individual operators satisfy the cri- 

teria for reversibility, soundness, and completeness. 

2. Graph-theoretic description of multicellular topological 

dynamics 

2.1. Description of multicellular topological structures 

From a graph-theoretic viewpoint, the physical state of cells 

whose topology is within the CPG can be described as a graph 

G ( V, E, A ). Here, the symbols V and E are topological parameters, 

i.e., sets of vertices and edges, respectively. The symbol A is a set 

of attribute physical parameters, such as spatial coordinates, mass, 

momentum, and energy. 

From a physical viewpoint, cell movements can be regarded as 

a quasi-static process in the Newtonian mechanics, where the me- 

chanical states of cells can be determined by spatial coordinates: 

cellular shape and configuration. Because the coordinates are rep- 

resented by a set of V, E , and vertex coordinates, both V and E are 

hyperparameters of A . Therefore, to focus on the topological aspect 

of multicellular dynamics, we focus on V and E by describing the 

graph, without loss of generality, as G ( V, E ) or G rather than G ( V, E, 

A ). 

G can be classified using a specific condition that is satisfied 

by each graph, as in Table 1 . Let the graph class G be a set of 

graphs that satisfies a specific condition. In Table 1 , graph classes 

are categorized by three points, namely the spatial dimension, reg- 

ular number of edges connected to individual vertices, and pres- 

ence or absence of a change in the number of cells. 

First, the graph class can be categorized using spatial dimen- 

sions. From a physical viewpoint, cells have 3D structures that are 

directly analyzed in 3D space, or approximately analyzed in 2D 

space. Hence, there are two types of graph classes in vertex mod- 

els, i.e., 2D and 3D. The graph class in the 2D and 3D cases are 

denoted by G and Q , respectively. 

Depending on the spatial dimensions, the correspondence be- 

tween topological and physical objects differs. In 2D space, an edge 

e represents a boundary between two neighboring cells, and a ver- 

tex v ∈ V represents a meeting point of cell boundaries ( Fig. 1 ). The 

2D region closed by a set of edges is called a “face,” and corre- 

sponds to an individual cell. In 3D space, a face f represents a 

boundary between two neighboring cells. Then, the edge e repre- 

sents an intercept of several faces, and the vertex v ∈ V represents 

a meeting point of intercepts. The 3D region enclosed by faces is 

called “a polyhedral graph,” and corresponds to an individual cell. 

A face can be represented by f 1 = { e 1 , . . . , e m 

} . Because the edge e 

is a set of two vertices, e 1 = { v 1 , v 2 } , the face can be rewritten as 

a set of vertices f 1 = (v 1 , . . . , v m 

) . 

Second, the graph class can be categorized by the number of 

edges connected to individual vertices, which is referred to as the 

degree of vertex. From a topological viewpoint, in the 2D graph 

class, individual vertices must be connected to at least three edges. 

Similarly, in the 3D graph class, individual vertices must be con- 

nected to at least four edges. Hence, the graph classes have the 

minimum number of connected edges (three in 2D and four in 

3D). In real biological systems, the degree of vertex is generally 

the minimum connected number, but this is not always the case, 

such as in the rosette formation ( Blankenship et al., 2006 ). In phys- 

ical uses of vertex models, the rosette structure is sometimes dealt 

with as an irreversible topological graph with more than the min- 

imum connected number ( Trichas et al., 2012 ). However, because 

vertex models approximate the width of cell–cell boundaries to be 

zero, there is a transient condition that several boundaries with the 

zero-limit width meet at a certain point in the physical process of 

multicellular dynamics. This transient event cannot be recognized 

in the finite timescale of multicellular dynamics. Rather, in phys- 

ical uses of vertex models, it seems more reasonable to approxi- 

mate the vertices connected to more than the minimum number 

of edges to be a set of the vertices connected to the minimum 

number. Even using the graph with the minimum connected num- 

ber, the rosette structure can be expressed using a physical con- 

straint for a set of vertices gathering within a local area. Thus, in 

this study, we focus mainly on graph classes with the minimum 

connected numbers. 

Notably, from a topological viewpoint, it is challenging to gener- 

alize the soundness and completeness to graph classes without the 

constraint of the connected number. The generalized graph classes 

are represented by G gen and Q 

gen , as in Table 1 . 

Third, the graph class can be categorized by the presence or 

absence of changes in the number of cells. Topological changes in 

the multicellular structure result from certain cell behavior, such as 

cell rearrangements, division, and death. While the number of cells 

can be changed by cell division and death, it cannot be changed 

by cell rearrangement. Graph classes with a constant number of k 

cells are represented by G (k ) and Q (k ) , which correspond to the 

multicellular dynamics without cell division or death. The other 

classes correspond to the multicellular dynamics under conditions 

including cell division and death ( Table 1 ). 
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