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A B S T R A C T

The classic Luria–Delbrück model can be interpreted as a Poisson compound (number of mutations) of ex-
ponential mixtures (developing time of mutant clones) of geometric distributions (size of a clone in a given
time). This “three-ingredients” approach is generalized in this paper to the case where the split instant dis-
tributions of cells are not i.i.d. : the lifetime of each cell is assumed to depend on its birth date. This model takes
also into account cell deaths and non-exponentially distributed lifetimes. Previous results on the convergence of
the distribution of mutant counts are recovered. The particular case where the instantaneous division rates of
normal and mutant cells are proportional is studied. The classic Luria–Delbrück and Haldane models are re-
covered. Probability computations and simulation algorithms are provided. Robust estimation methods devel-
oped for the classic mutation models are adapted to the new model: their properties of consistency and
asymptotic normality remain true; their asymptotic variances are computed. Finally, the estimation biases in-
duced by considering classic mutation models instead of an inhomogeneous model are studied with simulation
experiments.

1. Introduction

Mutation models are probabilistic descriptions of the growth of a
population of cells, in which scarce mutations randomly occur. Data are
samples of integers, interpreted as final numbers of mutant cells. The
frequent appearance in the data of very large mutant counts, usually
called “jackpots”, evidences heavy-tailed probability distributions.
Mutation models have two objectives: study the distribution of the
number of mutant cells at the end of the growth process; perform
fluctuation analysis on data to estimate the probability for a mutant to
appear at any division.

Any classic mutation model can be interpreted as the result of the
three following ingredients [10]:

1. a random number of mutations occurring with small probability
among a large number of cell divisions. Due to the law of small
numbers, the number of mutations approximately follows a Poisson
distribution. The expectation of that distribution is the product of
the mutation probability by the total number of divisions;

2. from each mutation, a clone of mutant cells growing during a
random time. Due to exponential growth, most mutations occur
close to the end of the process, and the developing time of a random
clone has exponential distribution. The rate of that distribution is
the relative fitness, i.e., the ratio of the growth rate of normal cells to
that of mutants;

3. the number of mutant cells that any clone developing for a given
time will produce. The distribution of this number depends on the
modeling assumptions, in particular the lifetimes of mutants.

This approach leads to a family of probability distributions which
depend on the expected number of mutations and the relative fitness.
One of the most used mutation models is the well known
Luria–Delbrück model [20]. A review on the Luria–Delbrück distribu-
tion for the second half of the twentieth century can be found in [43].
Here we try to give a historical summary of previous works, including
last decades. Mathematical descriptions were introduced by Lea and
Coulson [18], followed by Armitage [3] and Bartlett [5]. In that model,
division times of mutant cells were supposed to be exponentially dis-
tributed. Thus a clone develops according to a Yule process [42, p. 35];
[4, p. 109], and its size at any given time follows a geometric dis-
tribution. The distribution of final mutant counts is also explicit when
lifetimes of mutant cells are supposed to be constant. This latter model
is called Haldane model by Sarkar [30]; a first practical algorithm for
computing the Haldane distribution was proposed much later by Zheng
[45]; an explicit form of the asymptotic distribution is finally given by
Ycart [39]. General lifetimes have also been studied in [39], but no
explicit distribution is available apart from the exponential and con-
stant lifetimes. Other extensions of the Luria–Delbrück model take into
account the case where cells have a certain probability to die rather
than divide [2, sec. 3.1]; [6,14,40], where final number of cells are
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random [2,14,41,46].
As mentioned above, the main statistical objective of mutation

models is the estimation of the probability for a mutant cell to appear
upon any given cell division. It is computed dividing estimate of the
mean number of mutations by the mean final number of cells.
Computing robust estimates is of crucial importance in medical appli-
cations, like cancer tumor relapse or multidrug resistance of
Mycobacterium Tuberculosis for instance. Estimates are realizations of an
estimator which is a random variable depending on the considered
sample. A robust estimator satisfies two properties: consistency, and
explicit asymptotic distribution. Thus confidence intervals and p-values
can be computed.

Luria and Delbrück [20] have proposed two estimators. The first
estimator, called p0 estimator, is based on the relation between the
probability to get a null count in the sample and the mean number of
mutations: taking the negative logarithm of the relative frequency of
zeros among the sample gives a robust estimate of the expected number
of mutations [20, Eq. (5)]. Remark that if the sample does not contain
null counts, the method cannot be applied. The second estimator pro-
posed in the same article is based on the relation between the mean
number of mutants, the sample size, and the final mutant of cells [20,
Eq. (8)]. Since this estimator does not have expectation, it is not con-
sistent and should not be used. A wide panel of estimation methods has
been proposed since then [9,28]. Most of these methods are based on
empirical median of the mutant count to reduce the heavy tail effects
[18, Eq. (25)], [13, Eq. (6)]. Even if some median methods give good
results in practice, the consistency property is not satisfied or cannot be
checked: indeed the empirical median is not a robust estimator of the
median for discrete distributions. Thus other methods which satisfy the
properties of interest should be considered. Since the distribution of
final numbers has an explicit form, the Maximum Likelihood (ML)
seems to be an obvious optimal choice [21,32,44]. The computation of
the likelihood and its derivatives can be numerically unstable in the
sample contains large jackpots. One of the possible ways to reduce such
tail effects is “Winsorization” of the sample [38, Section 2.2], which
consists in replacing any value of the sample that pass a certain bound
by the bound itself. However, since very large numbers of mutants are
not countable in practice, such cases where the Winsorization is re-
quired are not common. The last method exposed here uses the prob-
ability generating function [10,29], and is called Generating Function
(GF) method. This method is comparable in terms of efficiency to the
ML method. Moreover, this method has a good numerical stability and a
negligible computing time. However, this method depends on tuning
parameters. These parameters should be set according to the data,
which is not possible in practice. Therefore, the GF method is im-
plemented as a trained semi-parametric method. The p0, ML, and GF
methods provide asymptotically normal estimators of the mean number
of mutation. The estimation of the mutation probability can then be
deduced dividing estimation of mean number of mutations by the mean
final number of cells. The fluctuations of the final number of cells can
also be taken into account [41], in order to get a more accurate esti-
mation. Sometimes, data are samples of couples of integers, interpreted
as final numbers of mutants and final numbers of cells. In that case, the
Maximum Likelihood can be used to estimate directly the mutation
probability [41]. Moreover, the relative fitness can also be estimated.

The lifetimes of the cells are supposed to be i.i.d. in the classic
mutation models. Thus, the population grows exponentially or dies out
[4,12]. However, the growth is in practice logistic [16]: it is ex-
ponential until an inflexion instant when the growth begins to slow and
eventually tends to zero. Indeed, during an experiment, a colony of cells
grows in an environment which contains a finite amount of resources.
Then a cell born at a instant s1 will complete its lifetime faster than a
cell born at a instant s2≪ s1. The Verhulst model [36] is one of the most
known deterministic growth model which takes into account this lim-
itation. Logistic-type stochastic models are described by Allen [1, sec.
9.4.2], and mathematically studied by several authors among which

[17,34,35]. Stewart et al. [33] proposed an approach to take into ac-
count the decreasing rate of division as the cells run out of resources.
Houchmandzadeh [11] described a discrete approach with a general
growth model for mutant clones. A Luria–Delbrück model assuming
that the replication number of any normal cell is limited whereas mu-
tants are not has been exposed in [27]. However, none of these studies
provide results for the non-i.i.d. lifetimes case, in particular on the
distribution of final mutant count.

In a previous work [23], an extension of the classic mutation models
to the case where the split instant of a cell depends on its birth date has
been proposed. The results on the asymptotic distribution of the mutant
count were very similar to that of classic Luria–Delbrück model.
Therefore the methods of estimation described above should be directly
adapted to the model with birth-date dependence. As for the homo-
geneous case, the three methods provide consistent and asymptotically
normal estimator for the parameters of interest. However, fast simula-
tion cannot be deduced from the approach exposed in [23]. Such al-
gorithms are necessary to perform large scale simulation studies. An-
other approach of the model is proposed here: as for the homogeneous
mutation models, the distribution of the final mutant count can still be
interpreted as the result of three ingredients. As a direct consequence, a
fast simulation algorithm can be deduced. The asymptotic results on the
distribution of the mutant count of [23] are recovered and extended to
the case where the death of normal cells are taken into account.

General modeling assumptions are described in Section 2. The
three-ingredients approach is exposed and used to prove the con-
vergence in distribution of the final mutant count in the Section 3.
Probability computation and simulation algorithms are exposed in
Section 4. The case where the hazard functions associated to the split
instant distribution of normal and mutant cells are proportional is
studied. In particular, the Luria–Delbrück distribution with cell deaths
[40] is recovered. The Haldane model is also recovered, and extended
to the case where mutant cell deaths are taken into account. The sta-
tistical question of estimation of the number of mutations and the re-
lative fitness is studied in Section 5: assuming that the other parameters
are known, the methods p0, ML, and GF methods can be extended to
inhomogeneous models. Estimation biases induced by considering
classic mutation models instead of model with birth-date dependence
are illustrated with simulation experiments in Section 6. In particular,
simulations seem to show that the bias will be in practice negligible,
which encourages to continue to use the classic model for estimation.

2. Hypotheses and models

Notations and hypotheses are described in this section. A rigorous
definition of the probabilistic model as a tree-indexed process has al-
ready been given in [23, Section 2]. Thus, the dynamics are shortly
described, and the modeling assumptions will be summarized at the end
of this section.

Consider a normal cell born at a given instant s. At a random instant
(called here a final instant) with cumulative distribution function (cdf)
Fν(s, · ), the cell produces one normal and one mutant cell with prob-
ability π (this event is called a mutation), two normal cells with prob-
ability − −π γ1 , or dies with probability γ. Consider now a mutant
cell, born at a given time s. At a random instant with cdf Fμ(s, · ), the
mutant produces two mutant cells with probability − δ1 or dies with
probability δ. Starting from a single cell, whatever its nature, the set of
all descendants constitutes a clone. Thus the clone size at a given time t
denotes the number of cells alive at time t in the clone. Consider a given
cell, the mutation or death events are independent from its final instant.
Two cells are independent conditionally on their common ancestor.
Therefore, the clones stemming from these cells are also independent
conditionally on this ancestor. Remark that those dependence as-
sumptions hold whatever the nature of the considered cells. At the
beginning of the process, the population contains a given number n of
normal cells and no mutants.
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