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A B S T R A C T

As environments become increasingly degraded, mainly due to human activities, species are often subject to
isolated habitats surrounded by unfavorable regions. Since the pioneering work by Skellam [25] mathematical
models have provided useful insights into the population persistence in such cases. Most of these models,
however, neglect the sex structure of populations and the differences between males and females. In this work
we investigate, through a reaction-diffusion system, the dynamics of a sex-structured population in a single
semipermeable patch. The critical patch size for persistence is determined from implicit relationships between
model parameters. The effects of the various growth and movement parameters are also investigated.

1. Introduction

Population dynamics studies usually assume that a species is char-
acterized by a single sex-class of individuals, usually females. This ap-
proach is surely appropriate for hermaphrodite species and in systems
where population dynamics is determined by a single limiting sex [24].
However, as in many species males and females have quite distinct
demographic parameters and no sex dominates population dynamics,
these unstructured models become unrealistic and models that take into
account the dynamics of both sexes are needed [4].

Males and females can show, for instance, quite distinct dispersal
abilities, which can have a great impact on their spatial distributions.
To cite a few examples, dispersal of C. carcharias (white shark) is sex-
biased with philopatric (non-roving) females and roving males [21]; at
local scale, dispersal in the common vole M. arvalis is strongly male-
biased [10]. It has been suggested as a general result that in mammals
males usually disperse more frequently than females, while in birds
females are the most dispersive sex [11]. In human-altered environ-
ments sex-biased dispersal is thought to expose populations to an even
greater risk of extinction [6]. Individuals that used to disperse to other
sites in the landscape may not find suitable areas, resulting in increased
loss of the most dispersive gender. As a consequence, sex-biased dis-
persal may lead to biased sex-ratios in the natal population, leaving a
higher number of individuals unpaired.

Despite the increasing number of empirical studies on sex-related
effects, very few mathematical studies have analyzed the dynamics of
sex-structured populations in space. Miller et al. [20] derived an ex-
plicit expression for the speed of invasion of a two-sex integrodifference

model. The effect of sex-biased dispersal on the spreading speed was
then studied. Reaction-diffusion equations have also been used to study
the dynamics of sex-structured populations in space [1,14]. Jin et al.
[14] modeled populations with short reproductive seasons in patches of
limited sizes through a periodic impulsive reaction-diffusion system
with Dirichlet boundary conditions, and identified conditions for po-
pulation persistence.

Increasing degradation of natural areas frequently subject popula-
tions to habitats of limited size surrounded by unfavorable regions.
Since the pioneering work by Skellam [25], reaction-diffusion equa-
tions have become one of the most important mathematical tools in the
study of population persistence in such situations. Skellam posed the
“minimal size problem” of how large a patch must be to support a
population. For a single population with hostile boundaries, diffusion
constant d and intrinsic growth rate r, the critical size of a one-di-
mensional patch is =l π d r/c .

In this study we examine the minimal size problem for sex-struc-
tured populations. We model population dynamics through a reaction-
diffusion system with reproduction given by the standard harmonic
mean mating function [16,19]. We study the problem of species per-
sistence in a finite domain with semipermeable boundaries and show
how standard techniques in the analysis of monotone parabolic partial
differential equations can be used to find an implicit relation that de-
termines the critical patch size. In the limit of completely hostile
boundary conditions, this critical patch size can be expressed explicitly
in terms of model parameters. Moreover, we study how distinct males’
and females’ traits affect the critical patch size.
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2. The model

Growth in two-sex models is a process that involves pair formation
and the production of new offspring by females. The number of couples
for certain local female (f) and male (m) populations is given by the
mating (or birth) function B m f( , ). Several forms for B have been
proposed [12,20]. This function is usually required to follow some
desired properties [3,12]: it needs to be a positive, non-decreasing
function for all m, f≠ 0, as well as homogeneous, that is,
B B=am af a m f( , ) ( , ) for all a≠ 0. The harmonic mean function

B =
+

m f
mf

m f
( , )

2
(1)

follows all these properties and is free from the difficulties other
functions present [15]. The geometric mean B =m f mf( , ) and
minimum function B =m f m f( , ) min( , ) are other common mating
functions. The harmonic mean mating function is often considered the
least objectionable mating function [16]. Also, Miller and Inouye [19]
verified in a laboratory experiment that the harmonic mean mating
function best describes the growth of the bean beetle (Callosobruchus
maculatus) at low densities.
B can be easily modified to account for polygamous systems, in

which males or females can mate with more than one partner. If h re-
presents the number of females with which each male mates, also
known as the “harem” size, the number of “harems” formed is given by
B m f h( , / ) [24]. The number of paired females is then given by
Bh m f h( , / ). Polygynous, monogamous and polyandrous mating sys-

tems can be accommodated by setting h>1, =h 1 or h<1, respec-
tively.

Now we assume that individuals of both sexes move and reproduce
in a single one-dimensional habitat of size l. The local number of re-
producing females for given male (m) and female (f) densities is as-
sumed to be given by the harmonic mean mating function, Eq. (1).
Different mating systems are accommodated by properly introducing
the harem size (h) into the model, as described above. We also assume
that male and female diffusivities, dm and df respectively, are distinct in
general. Denoting time as t≥ 0 and spatial positions by ∈ −x l l[ /2, /2],
we write the reaction-diffusion system of equations for male and female
populations as:
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where c∈ [0, 1] is the fraction of males at birth and g is the rate of
production of new offsprings per paired female, while μm and μf are the
male and female mortality rates, respectively.

At patch boundaries we impose semipermeable boundary conditions
[5,27]. We initially write these conditions in the form given by Van Kirk
and Lewis [27]:
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where parameters cm, f≥ 0 represent the enticement of individuals to
leave the patch. For =c 0m ( =c 0f ) no males (females) leave the patch
and we get no-flux conditions. In the limit cm, f→∞, individuals leave
the patch and never return.

We introduce the new scaled quantities:
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and rewrite the equations as:
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In this new scaling we can define the boundary permeability of males
and females as
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Boundary conditions then read:
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Parameters αm, f∈ [0, 1] control boundary permeability and can
represent both individual movement decisions [27] and the quality of
the exterior region [17]. In the limit =α 0m f, no individuals are lost
through the boundaries and we get no-flux conditions. Yet when

=α 1m f, we get hostile boundary conditions. In this case, every in-
dividual that hits a boundary leaves the patch and never returns.

The Eqs. (6)–(7) form a system of nonlinear partial differential
equations that is homogeneous, in the sense that if (M(X, T), F(X, T)) is
a solution to the system, then (sM(X, T), sF(X, T)), with s a given con-
stant, is a solution as well. Note also that there is no saturating me-
chanism in our mating function and therefore solutions either decrease
to zero or grow to infinity asymptotically. Accordingly, our model is
appropriate to investigate the growth of small populations and speci-
fically the critical size problem.

3. Results

Our goal is to derive persistence conditions for our sex-structured
model, i.e. conditions for which the population can grow. Persistence
conditions for problems without Allee effects are typically derived from
the linear stability of the trivial zero steady state solution [2]. When we
try to linearize Eqs. (6)–(7) around the (0, 0) state, though, we obtain
an indeterminacy in the sex-ratio of populations, =M F/ 0/0, which
leads to the mating function being undefined. In what follows below,
we obtain conditions for species persistence instead by finding parti-
cular exponential solutions for this system and determining conditions
for the growth of these solutions. Using results from maximum princi-
ples for parabolic partial differential equations, we then show that these
conditions imply persistence of the population for a general class of
initial conditions.

3.1. Particular solutions

We seek solutions of the form:

=M X T M e V X( , ) ( )λT
0 (10)

=F X T F e V X( , ) ( ),λT
0 (11)

where M0 and F0 are given positive constants. As population densities
are always positive, we consider only real values of λ, and V(X)≥ 0.
Substituting these expressions into Eqs. (6) and (7), V(X) must satisfy
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