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A B S T R A C T

To model non-Markovian fluctuations arising in biomolecular transport, we introduce a stochastic process with
memory where Brownian motion is modulated sinusoidally. The probability density function and moments of
this non-Markovian process are evaluated analytically as Hida stochastic functional integrals. Comparison of
graphs of computed variance vis-á-vis empirical data for protein diffusion coefficients closely match with both
exhibiting emergent superdiffusive then subdiffusive behavior for longer proteins.

1. Introduction

We present a Hida stochastic functional integral approach to infer
non-Markovian structure of fluctuations generating nonlinear mean
square deviations (MSD) of measured diffusion coefficients from esti-
mated values for proteins of varying numbers of component amino
acids. This approach allows analytical evaluation of the probability
density function (PDF) and moments. Results should be useful for stu-
dies of biomolecular transport in complex environments with boundary
conditions such as proteins diffusing in crowded cells which has re-
ceived much attention in view of its role in controlling rates of cell
processes [1–7]. For most proteins, a plot of experimental diffusion
coefficient D values against protein length, or number of amino acids N,
reveals a decreasing mean curve, or best fit curve, of the plotted D
values [2,3,6]. Although most proteins yield diffusion coefficient D
values near the mean curve, some values however have significant
deviations from the mean curve or expected trend based on estimation
schemes [2]. Such deviations hamper desired predictability of diffusion
coefficients as these depend on different factors such as cell size and
density of intracellular structures complicated by variations in in-
tracellular media. It would thus be helpful to recognize a deeper level of
mathematical structure in deviations from the empirical mean curve for
diffusion coefficients.

Stochastic models have allowed deeper insights into the dynamics of
cellular processes since these generally involve vigorous fluctuations.
For example, recent work in studies of ion channel fluctuations in

cellular membranes involve Markov models [8]. However, when
memory or correlation between events is involved, it is necessary to go
beyond Markov models. Fractional Brownian motion (fBm) has been
used to describe anomalous diffusion in various phenomena including
biological processes [9–11]. Nevertheless, this is still insufficient for the
study of measured protein diffusion coefficients [2–4], since fBm may
not fully capture trends in MSD of diffusion coefficients for varying
protein lengths. There could be deviation from the power law time
dependence associated with fBm, i.e., MSD(fBm)∽tα, which includes or-
dinary Brownian motion as a special case for =α 1.

In this paper, we show that there exists a suitable larger class of
stochastic processes with memory for which we can get a closed form
for the probability density function and moments. This process is
parametrized with a random variable ξ(L),

= +ξ L ξ B L( ) ( ),SM
0 (1)

where the initial value is =ξ ξ (0)0 and the fluctuating part BSM(L) is
parametrized by a Brownian motion B(s) with sinusoidal modulation of
the form,

∫= − −
−B L bsin cL L s sin as

s
dB s( ) exp[ ( )] ( ) ( ) ( ).SM L ν

ν0
( 1)/2

(1 )/2
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In Eq. (2), the factor −bsin cL sin as sexp[ ( )] ( )/ ν(1 )/21
2 modulates the

Brownian fluctuation B(s), while the term − −L s( ) ν( 1)/2 serves as a
memory kernel for the stochastic process as chain length s progresses
from 0 to =L π a/ . The constants a, b, c and ν are determined depending
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on the modelling problem. The parametrization in Eq. (2) gives a larger
class that goes beyond anomalous diffusion or fBm given by:
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in the Riemann-Liouville representation [12]. In Eq. (3), the Hurst
index H describes long-memory processes (enhanced diffusion) for 1/
2<H<1, short-memory processes (suppressed diffusion) for
0<H<1/2, and ordinary Brownian motion for =H 1/2.

As we show in this paper, the expanded class of stochastic processes
represented by Eq. (2), closely describes the underlying pattern for
nonlinear length-dependent MSD and provides a better fit for the shape
and general behavior of empirical graphs for protein transport.

2. PDF and MSD analysis for stochastic process with memory

The probability density function (PDF) for fluctuations with
memory given by Eq. (2) can be evaluated using the Hida stochastic
functional integral approach which facilitates handling of the nontrivial
length dependence (0≤ s≤ L) of the random variable ξ(s). The ap-
proach first considers the ensemble of all possible fluctuations starting
at the fixed value ξ0 at =s 0 then determines the probability that ξ ends
at a specific value =ξ L ξ( ) L when =s L. Following Feynman’s sum-
over-all histories [13–15], we then consider all possible fluctuations
ξ(L) which satisfy the δ-function endpoint constraint,
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In Eq. (4), we expressed the Brownian motion differential in terms of
white noise ω(s), i.e., =dB s ω s ds( ) ( ) . We can then take ω(s) as the
Hida white noise variable [16] with the Gaussian white noise prob-
ability measure dμ(ω). The probability density function P(ξL, L; ξ0, 0)
can be obtained by simply evaluating the expectation value

−E δ ξ L ξ( ( ( ) )),L i.e.,
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In Eq. (5), we have written the delta function in terms of its Fourier
representation. Using Eq. (2) we can write Eq. (5) as,

∫
∫ ∫

= −

×

−∞

+∞
P ξ L ξ

π
dk ik ξ ξ

e dμ ω

( , ; , 0) 1
2

exp{ [( )]}

( ),

L L

i ω s ζ s ds

0 0

( ) ( )
L

0 (6)

where, = − − −ζ s ke L s sin as s( ) ( ) ( )/bsin cL ν ν( ) ( 1)/2 (1 )/21
2 . The integral over

dμ(ω) in Eq. (6) is simply the characteristic functional [16],
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defined as the Fourier transform of dμ(ω). With Eq. (7), we obtain from
Eq. (6) the expression,
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The integral over dk, recognized as a Gaussian integral, can be
evaluated to yield,
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Finally, using Eq. (3.768.7) of reference [17], for Re ν>0, the integral
over ds can be evaluated, i.e.,
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where Γ(ν) and Jν(z) are the gamma function and Bessel function, re-
spectively. The result Eq. (10), allows us to write a closed form of the
probability density function from Eq. (9) as,
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As shown in the Appendix, the PDF Eq. (11) satisfies a modified dif-
fusion equation.

We next use Eq. (11) to evaluate mean square deviations (MSD) for
this stochastic process with, MSD = − = −ξ ξ ξ ξ( ) ,2 2 2 for the
fluctuating variable ξ. An evaluation of the second moment,
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where we used Eq. (3.462.8) of reference [17]. With this, the MSD
becomes, (with, =ξ ξ0),
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As an illustrative example, plots of Eq. (13) for the Hurst-like diffusive
index =ν 0.55, characteristic length =a 0.0008, expansion rate

=b 0.35, characteristic frequency =c 0.0041 (solid line) and =c 0
(dashed line) are shown in Fig. 1. Application of this sinusoidally
modified fluctuation can be done for diffusion coefficients of proteins of
various lengths as shown in the next section.

Fig. 1. Log-log graph of MSD versus L for =ν 0.55, =a 0.0008, and =b 0.35. Solid line:
=c 0.0041; dash line: =c 0.
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