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A B S T R A C T

In this paper, we describe the dynamics of a vector-borne relapsing disease, such as tick-borne relapsing fever,
using the methods of compartmental models. After some motivation and model description we provide a proof of
a conjectured general form of the reproductive ratio R0, which is the average number of new infections produced
by a single infected individual. A disease free equilibrium undergoes a bifurcation at =R 10 and we show that for
an arbitrary number of relapses it is a transcritical bifurcation with a single branch of endemic equilibria that is
locally asymptotically stable for R0 sufficiently close to 1. Furthermore, we show there is no backwards bi-
furcation. We then show that these results can be extended to variants of the model with an example that allows
for variation in the number of relapses before recovery. Finally, we discuss implications of our results and
directions for future research.

1. Introduction

Many mathematical models dealing with the spread of infectious
diseases show a rich variety of dynamics that arise from various non-
linear interactions or temporal forcing [1]. Vector-borne diseases are
additionally complex with interactions between host and vector species
[2]. Tick-borne relapsing fever (TBRF) is an example of a system that
incorporates such complex interactions in a multiple host-vector com-
munity.

In North America, TBRF is caused by several species of spiral-shaped
bacteria (Borrelia spp.) that are transmitted to their hosts through the
bite of an infected vector, the soft ticks of the genus Ornithodoros. Once
infected with the bacteria, ticks remain infectious for extended periods
and possibly for life [3]. Most human cases occur in the summer months
and are often associated with sleeping in rustic cabins in mountainous
areas of the Western United States [4]. The model presented in this
paper is motivated by a system located on Wild Horse Island, Flathead
Lake, Lake County, Montana (WHI), where the presence of this pa-
thogen has been confirmed [5]. The island harbors two host species, the
red squirrel (Tamiasciurus hudsonicus) and the deer mouse (Peromyscus
maniculatus) and a single vector species (O. hermsi), which is thought to
control the disease patterns on the island. See [3] for more details.

Compartmental models, such as the SIR models with susceptible,
infectious, and removed compartments, have been applied to many
disease and disease-like systems in an effort to examine system dy-
namics [6–13]. In these epidemic models, susceptible individuals pass

into the infected class and then transition to the removed class. For
some diseases, recovered individuals may relapse through a reactiva-
tion of infection and revert back to an infected class. TBRF is a system in
which relapse always occurs, but between different infected classes
caused by the bacteria’s antigenic variation [14–16]. The advantage of
antigenic variation is to extend the length of infection so that the host
will still be infected at the next interaction with a susceptible vector
[17,18]. The questions that we raise are: (1) How do the number of
relapses affect disease dynamics? and (2) How do these dynamics differ
from a vector-borne disease with no relapses?

Given a mathematical model for disease spread, the disease re-
production number, R0, is an essential summary parameter. It is defined
as the average number of secondary infections produced when one in-
fected individual is introduced into a host population in which all in-
dividuals are susceptible [19]. When R0< 1, the disease free equili-
brium (DFE), at which the population remains in the absence of disease,
is locally asymptotically stable. However, if R0> 1, then the DFE is
unstable and invasion is always possible [20] and a new endemic
equilibrium (EE) exists.

A key assumption for the host-vector disease modeling is the defi-
nition of the transmission term, which represents the contact between
hosts and vectors. The formulation of the transmission term directly
affects the reproduction number R0. For host-vector disease models, the
transmission term includes vector biting rate f, which controls the
disease transmission both from the vector-to-host and from the host-to-
vector. The TBRF model follows frequency-dependent transmission
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assumptions through the biting rate, since a blood meal is required
approximately once every three months regardless of the host popula-
tion density. Following this framework, it is reasonable to assume that a
host would experience an increasing number of bites as the vector
population increased [3]. While our work here shares techniques with
previous work done on staged progression models [7,13,21–24], the
key difference is the addition of vectors.

In this paper, we confirm a general form for R0, that was con-
jectured in [3] when there is a single host species in the system, fol-
lowing the methodology of Van den Dreissche and Watmough for
general compartmental disease models [25] which is then extended
with an arbitrary number of relapsing states. From this we show how R0

depends on the number of relapses and the various parameters in the
model. These results are similar in form to [26] (Our thanks to the
reviewer for bringing this to our attention), though there is no age-
dependence in the host population in our model. Our most novel results
classify the bifurcation at =R 1,0 showing that it is transcritical with an
exchange of stability between a disease free equilibrium and an en-
demic equilibrium. We also show that there is a unique endemic
equilibrium for each value of R0> 1. We finally consider a variation of
the model which accounts for differing number of relapses before re-
covery, and close with discussion and future work.

2. Single host vector model

To begin constructing the model we first make assumptions moti-
vated by the spread of TBRF on WHI. We assume that new infections
only occur when an infected vector bites a susceptible host or when a
susceptible vector bites an infected host. We also assume that when a
vector becomes infected, it is infected for life. Furthermore, we assume
that the transmission terms are frequency dependent through the biting
rate f. The infected hosts relapse into infected compartments sequen-
tially at a rate αi and recover from the disease at rate γ. The total po-
pulations of hosts and vectors are assumed to remain constant are de-
noted by N and ∼N respectively (throughout the paper we will indicate
quantities corresponding to the vectors with a ͠ ). The infection dy-
namics in a single host-vector system with −j 1 relapsing rates for j≥ 1
infected compartments involve the number of susceptible hosts S(t),
infectious hosts Ik(t), removed hosts R(t), susceptible vectors S t( ),͠ and
infected vectors I t( ),͠ where the total host population is

= + ∑ +=N S I Rk
j

k1 and the total vector population = +∼N S I͠͠ . A
conceptual model for this scheme is given in Fig. 2.1. The equations for
the model are as follows: first the host equations
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and the vector equations:
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The growth rates Λ and ∼Λ are follows
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Under these assumptions it is clear that the total host and vector po-
pulations are constant. These growths rates allow us to have a constant
population with differential mortality, as in [27]. We let S and Sv be the
constant populations for the hosts and vectors respectively. It is then
easy to see that (Table 1)

… = …S I I R S I S S( , , , , , , ) ( , 0, , , 0)͠͠j v1

is a fixed point of the system. This is known as the Disease Free Equi-
librium (DFE). To investigate the stability of the DFE we calculate R0 for
arbitrary j.

3. R0 for the single host-vector system with −j 1 relapses.

3.1. Dimensionless form

To ease some calculation we will put Eqs. (2.1) and (2.2) in
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Fig. 2.1. Conceptual models for the cross-infection dynamics between a single host-vector
system, which includes (a) no relapses between =j 1 infected compartments, (b) 1 re-
lapse between =j 2 infected compartments, and (c) −j 1 relapses between j infected
compartments. Dashed lines are the vital rates for each population, where solid lines refer
to interaction rates between compartments.
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