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A B S T R A C T

The intrinsic dynamics of bacteria often play an important role in the transmission and spread of waterborne
infectious diseases. In this paper, we construct mathematical models for waterborne infections and analyze two
types of nontrivial bacterial dynamics: logistic growth, and growth with Allee effects. For the model with logistic
growth, we find that regular threshold dynamics take place, and the basic reproduction number can be used to
characterize disease extinction and persistence. In contrast, the model with Allee effects exhibits much more
complex dynamics, including the existence of multiple endemic equilibria and the presence of backward bi-
furcation and forward hysteresis.

1. Introduction

Waterborne infectious diseases remain a significant threat to public
health throughout the world [3,28]. Common waterborne infections
include cholera, typhoid fever, cryptosporidiosis, giardiasis, and many
others; these can be caused by a variety of pathogenic microbes (bac-
teria, protozoa, etc.) in contaminated water. The World Health Orga-
nization (WHO) [46] estimates that such infections account for 3.6% of
the total global burden of diseases, and lead to about 1.5 million human
deaths each year. Even the most developed countries, such as the US,
are occasionally plagued by these infections. For example, in 1993, a
waterborne cryptosporidiosis outbreak in Milwaukee, Wisconsin led to
an estimated 403,000 infected individuals, including 4400 people
hospitalized. On a worldwide scale, the best known waterborne disease
is perhaps cholera, caused by virulent strains of the Gram-negative
bacterium Vibrio cholerae (V. cholerae). The past decade witnessed an
increasing number of cholera outbreaks, including one of the largest
cholera epidemics in modern history that took place in Haiti from 2010
to 2012 with more than 530,000 reported cases and over 7000 deaths
[45].

Mathematical modeling, analysis, and simulation have long pro-
vided useful insight into epidemiology. In particular, a large number of
mathematical models have been published for the dynamics of water-
borne diseases [6,12,18,25,31–33,37,40,41,43,44]. Many of these
models included both direct and indirect transmission pathways in
order to better characterize the transmission pattern of waterborne
infections. One major limitation of current modeling studies in water-
borne diseases, however, is that the intrinsic dynamics of the water-
borne pathogens are poorly addressed, leading to incomplete, and

often, inadequate, understanding of the pathogen evolution and its
impact on disease transmission and spread. For example, a standard
assumption in the majority of cholera models, based on an early theory
in cholera ecology [14], is that the Vibrios (i.e., V. cholerae) cannot
sustain themselves in the absence of human contribution; e.g., shedding
from infected individuals and inflow from contaminated sewage. The
assumption allows a simple, often linear, representation of the rate of
change for the bacterial density: a positive contribution from the in-
fected human population, and a negative contribution due to natural
death of the Vibrios. Such a representation considerably simplifies the
mathematical analysis. Unfortunately, there have been strong evidences
in recent ecological studies that the Vibrios can independently survive
and multiply in various aquatic environments, including freshwater,
estuaries and seawater [4,7,11,13]. Other waterborne pathogens, such
as the bacterium Escherichia coli, have also been found to be capable of
independently surviving in the aquatic environment [20]. These eco-
logical findings demand new modeling efforts toward better under-
standing the intrinsic dynamics of waterborne pathogens (especially
bacteria) and the connection between their environmental persistence
and disease outbreaks.

The present paper aims to shed light on this important aspect of
waterborne disease epidemiology, using mathematical modeling and
analysis based on differential equations. To that end, we will in-
corporate nonlinear dynamics terms into the pathogen evolution
equation, and we will focus on two types of intrinsic bacterial dy-
namics: quadratic growth, and cubic growth.

The quadratic growth, more commonly referred to as the logistic
growth [19], is probably the most popular model to describe population
changes, ranging from macroscopic to microscopic organisms.
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Essentially, this model introduces a threshold for the total population,
known as the carrying capacity, so that a population would ex-
ponentially grow initially but then stabilize at the carrying capacity.
The model could reflect realistic constrains (such as lack of resources)
on the population growth.

A significant departure from the logistic growth pattern, the cubic
growth model is known to introduce Allee effects. An Allee effect refers
to a correlation between individual fitness and population density
[1,2]. Particularly, a strong Allee effect describes a population that
exhibits positive growth at intermediate population density but declines
when the population density is either too low or too high.

Allee effects have been well documented and extensively studied for
the growth dynamics among animal populations [1,8,26]; related
mathematical modeling work includes, for example, [9,10,15,23,39].
There are relatively few studies for Allee effects in populations of mi-
croorganisms such as bacteria and parasites [24]. Kadam and Velicer
[22] reported laboratory measurements of the bacterium Myxococcus
xanthus and found that it sporulates less efficiently at lower population
densities and produces no spores at all below a minimum threshold
density. Li et al. [30] demonstrated that bacterial populations in high-
density biofilms are better able to generate a coordinated protective
response against highly acidic conditions than are populations at low
density, thus promoting the survival of the microbial species. Ji et al.
[21] observed that a minimum population density is typically needed
for some pathogenic microbes to initiate the expression of virulence
factors necessary for the establishment of successful infections. In ad-
dition, Smith et al. [38] investigated Allee effects on the bacterial
spread and survival through the engineered bacterium E. coli. In all
these studies, it is observed that a minimal density, known as the Allee
threshold, is required to initiate positive population development.

Given the significance of waterborne infections, the complications
of their related dynamics, and the experimental evidence of the non-
trivial growth patterns of waterborne pathogens, it is worthwhile to
mathematically explore the details of the intrinsic bacterial dynamics
and the impact on waterborne disease transmission. To that end, we
organize the remainder of this paper as follows. In Section 2, we de-
scribe and analyze a waterborne disease model where the bacteria go
through logistic growth. In Section 3, we modify the waterborne disease
model by replacing the logistic growth with the cubic growth (i.e.,
growth with Allee effects) for the bacteria, and investigate the dynamics
using both mathematical analysis and numerical simulation. In
Section 4, we conclude the paper with some discussion.

2. Logistic growth

We consider the following equations that describe the transmission
dynamics of a waterborne bacterial infection. We incorporate both di-
rect (i.e., human-to-human) and indirect (i.e., environment-to-human)
transmission pathways, each represented by a bilinear incidence. Our
focus is the intrinsic dynamics of the bacteria in this process, re-
presented by a logistic growth model here.
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The parameter = + +N S I R is the total population size of the host
individuals with a constant birth and death rate μ. The variables S, I and
R represent the susceptible, infected and recovered individuals, re-
spectively, whereas B represents the concentration of the bacteria in the
contaminated water. α and β denote the direct and indirect transmission
rates, respectively, δ is the recovery rate, r is the bacterial intrinsic
growth rate, k is the carrying capacity, τ is the bacterial removal rate,
and ξ is the rate of contribution from an infected individual to the

bacterial population in the environment (e.g., through shedding). We
neglect the disease related mortality here. All these parameters are
assumed to be positive.

It can be easily verified that the domain of biological interest
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is positively invariant with respect to the model (1).
There is a unique disease free equilibrium (DFE) at
=X N( , 0, 0, 0)0 . We proceed to determine the basic reproduction

number R0 for this model. The compartments I and B are directly re-
lated to the disease. Using the notions in [42], the non-negative matrix
F that denotes the generation of new infections and the non-singular
matrix V that denotes the transfer among infectious compartments, are
respectively given by
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It follows from (3) that the basic reproduction number can be re-
presented by
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where ρ denotes the spectral radius of the matrix −FV 1.
We comment here that the expression for the basic reproduction

number is not unique [5,42]. For example, in the above we derived R0
by treating the intrinsic bacterial growth and host shedding as gen-
eration of new infections in B. If, instead, we treat these as transfer of
infections and put them in the matrix V, then we obtain another basic
reproduction number

R =
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+
+ −

∼ αN
μ δ

ξβN
μ δ τ r( )( )0

where we assume τ≠ r. Through simple algebraic manipulation, we
can show that R > = <( , ) 10 if and only if R > = <∼ ( , ) 10 . That is, the
two reproduction numbers are equivalent in characterizing disease
risks.

2.1. Nontrivial equilibrium

A nontrivial equilibrium =X S I R B( , , , ) for system (1) satisfies
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Let = +θ μN
μ δ and cancel S from (5) and (6), we obtain
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In addition, we have =B p I( ) from (9), where
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