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The concept of structural identifiability for state-space models is expanded to cover mixed-effects state-space
models. Two methods applicable for the analytical study of the structural identifiability of mixed-effects models
are presented. The two methods are based on previously established techniques for non-mixed-effects models;
namely the Taylor series expansion and the input-output form approach. By generating an exhaustive summary,
and by assuming an infinite number of subjects, functions of random variables can be derived which in turn

determine the distribution of the system’s observation function(s). By considering the uniqueness of the ana-
lytical statistical moments of the derived functions of the random variables, the structural identifiability of the
corresponding mixed-effects model can be determined. The two methods are applied to a set of examples of
mixed-effects models to illustrate how they work in practice.

1. Introduction

Structural identifiability analysis tests if the parameters in a given
model structure can be uniquely determined with a given input design
together with noise-free, continuous output function(s). If there exists a
unique set of parameters for the output solution then the model is called
structurally globally identifiable, if there exists a countable number of sets
of parameters for an output the model is called structurally locally
identifiable and if there exist uncountable numbers of parameter sets for
a model output the model is called structurally unidentifiable [1,2].

Several methods have been developed for performing structural
identifiability analysis including the Taylor series approach [3], the
Laplace transformation approach [4], the similarity transformation
approach [5], the Exact Arithmetic Rank (EAR) approach [6], differ-
ential algebra based approaches [7], input-output approaches [8], and
the profile likelihood approach [9]. These methods were originally
developed to study structural identifiability in systems of ordinary
differential equations with no statistical element included. Additional
important publications regarding structural identifiability include
[10-15].

An area where mathematical modelling and simulation plays an
important role is in drug discovery and development in the pharma-
ceutical industry. One of the motivations for using modelling in drug
discovery and development is to detect and quantify variations in both

pharmacokinetics in a population, i.e., how the drug is distributed in
the body, and in pharmacodynamics, i.e., what effect the drug has on
the body. This is essential for instance when finding personalised dosing
regimens and optimal dosing for different subgroups in the population.
It is not uncommon that the pharmacokinetic properties and the
pharmacodynamic response for a particular treatment varies between
different patients, or groups of patients with different covariates (sex,
age, weight, etc), or even between different treatment occasions. In
order to predict such future scenarios with confidence having a struc-
turally identifiable model is central. To model this, a so called mixed-
effects framework is commonly used [16]. In such a framework, all
subjects in a population share the same structural model and para-
metrisation, but not the same parameter values. By postulating the form
of the distribution of the model parameters in a statistical model, the
inference problem is expanded to include variance parameters as well
as the structural parameters.

However, the addition of a statistical model means that existing
structural identifiability methods are not directly applicable to mixed-
effects models. Although there has been some work done on the pro-
blem of structural identifiability in mixed-effects models including
[17-20] and [21], the main efforts of developing methods to analyse
structural identifiability have so far been focused on non-mixed-effects,
or fixed-effects systems. The two methods presented in this paper are
related to the Laplace transform approach for mixed-effects system
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presented in [21] via the generation of the exhaustive summary ex-
plained below. However, the Laplace transform for mixed-effects sys-
tems presented in [21] is only applicable to linear systems whereas the
two approaches presented in this paper are applicable to nonlinear
system as well.

In this paper, we first define what we mean by structural iden-
tifiability in systems of ordinary differential equations and mixed-ef-
fects systems, respectively. Then, we present two existing structural
identifiability analysis methods and how they can be extended to
mixed-effects models. Lastly, we apply these methods to a set of mixed-
effects models to illustrate how the methods work in practice.

2. Structural identifiability
2.1. State-space model

Consider a model written in the following state-space form

x(t,0) =fx( 0), u(®),0) x(t) =x0(6)
y(t. 6) =h(x(t, 0), u(r), ) @

where x(t, 6) € R" is the state vector, u(t) € RY is the input vector,
6 € R? is the vector of the model parameters, y(t, 8) € R™ is the output
vector, t denotes time and f and h are smooth functions.

Let the generic parameter vector 6 belong to a feasible parameter
space O, i.e., O € O. Let y(t, 0) be the output function from the state-
space model (1). Further, consider a parameter vector & where
¥y(t, 6) = y(t, 8) for all t. If this equality, in a neighbourhood N € ® of
0, implies that 6 =  then the model is structurally locally identifiable. If
N = O then the model is structurally globally identifiable. For a structu-
rally unidentifiable parameter, 6;, every neighbourhood N around 6; has
a parameter vector & where 6; # §; that gives rise to identical input-
output relations [1].

2.2. Mixed-effects state-space model

By a mixed-effects state-space model, subsequently denoted mixed-
effects model, we mean a system written in the following form

xi(t, ¢) =f X, ¢, wi(0), ¢)  xi(to) = x0($)
Y@ ) =h@x( ¢), wi0), ¢) )

where ¢, = g(6, n;, C;) are the parameters for the ith subject, #; ~ N(O,
Q) are the random effects where N denotes a normal distribution, Q is
the covariance matrix of the random effects #;, @ is a vector of the
population parameters and C; are the covariates vector for the different
subjects in the population.

As mixed-effects models give individual trajectories, the structural
identifiability concept needs to be extended from considering the un-
iqueness of model parameters given a set of output signals to con-
sidering the uniqueness of model parameters given a set of distributions
of the output signals, i.e., whether different parameter values may re-
sult in different or identical distributions of the same given output
signal(s).

Let p(y¢e, o3, t) denote the distribution of the output signals y at time
t. Let the generic parameter vector and matrix {6, Q} belong to a fea-
sible parameter space {0, Q} C 0, and consider the following two sets
of parameters {0, Q} and {8, Q}. If P(V{s,m’ t) = Peap b) for all t
implies that {6, 2} = {8, £} in a neighbourhood N C © then the model
is structurally locally identifiable, and if N = © the model is structurally
globally identifiable. For a structurally unidentifiable parameter, 6;, or w;,
every neighbourhood N around 6;, or w;, has a parameter vector/matrix
8, or 2, where 6; # 0, or w; # @;, that gives rise to the same distribution
of identical input-output relations.
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3. Methods

In this section two structural identifiability analysis methods that
were originally developed for non-mixed-effects state-space systems
will be presented. It will be shown how these methods can be extended
to also study structural identifiability in mixed-effects models by con-
sidering functions of random variables.

In a structural identifiability analysis the model structure itself is
analysed to see whether it allows for unique parameter estimates or
otherwise. In such an analysis, assumptions on having ideal experi-
mental conditions are made. For a fixed-effects state-space model, such
ideal experimental conditions include noise-free and continuous-time
data. In a mixed-effects system, ideal experimental conditions also in-
clude having data from an infinite number of subjects. In some sense,
this concept is similar to the parallel experiment approach presented in
[11] since each subject could be viewed as a single experiment resulting
in an infinite number of parallel experiments. As a consequence, the
output signal(s) are continuous both in time as well as their distribution
at all time points. The distribution of the output signal(s) depends on
the distribution of the model parameters. Therefore, in order to study
the structural identifiability of a mixed-effects model, the distributions
of the model parameters must be studied analytically.

3.1. Functions of random variables

In this paper we relate the structural identifiability problem in
mixed-effects systems to functions of random variables Z,(6, ).

Let Z(6, ) = (Z1(6, 1), Z,(6, 1), ---)T be a vector of functions of
random variables. In our analysis we assume full knowledge of all of the
statistical moments and covariances of Z(6, n). We are interested in
whether the statistical moments and covariance matrix of Z(0, #) de-
termines {0, Q} uniquely, or otherwise. By calculating different orders
m of the statistical moments and covariance of Z(0, #n), introducing
alternative parameters {8, Q}, equating these such that

E[Z™(6,n)] =E[Z™(8, 7)] 3)

Cov(Z (6, m) = Cov(Z(8, 7)) ()

and solving for @ and Q the uniqueness or otherwise of the parameters
can be determined. By [E [Z" (6, n)] we mean the mth statistical moment
element-wise in Z(6, ).

As an example, consider the case of two functions of random vari-
ables Z. To ensure positivity both functions are lognormally distributed.
The associated covariance matrix Q is full. We therefore have the fol-
lowing:

A B,em
Z = =
(ZZ) (929”2) 5)

_ | @1 w2
n~N(0, Q) Q= (0-)12 wz) ©

with unknown parameter vector 6 = (61, 6,, w1, @,, wi,). The first mo-
ment for Z is

2
ElZ] = [elei)-
B,e2 7

The covariance matrix for Z is given by
Cov(Z) = E[ZZT] - E[Z]E[Z]T
E[Z] - E[Z,} E[Z:Z,]
= — E[Z]E[Z,]
E[Z:Z:] - EIZ]E[Z)] E[Z}] - E[Z]

where the diagonal elements, i.e., the variances of Z; and Z, are given
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