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A B S T R A C T

Discontinuous boundary conditions arise naturally when describing various physical phenomena and numeri-
cally modelling such conditions can prove difficult. In the field of pharmaceutical sciences, two such cases are
the partitioning of a compound between different materials and a flux rate membrane controlling mass transfer
between materials which both result in a discontinuous jump in concentration across adjacent materials. In this
study, we introduce a general one-dimensional finite element drug delivery framework, which along with dif-
fusion, reversible binding and dissolution within material layers, incorporates the partitioning and mass transfer
conditions between layers of material.

We apply the framework to construct models of experiments, which along with experimental data, allow us to
infer pharmacokinetic properties of potential material for drug delivery. Understanding such material properties
is the key to optimising the therepeutic effect of a targeted drug delivery system.

1. Introduction

For the treatment of localized diseases, therapuetic levels of medi-
cation need to be sustained in areas which can be hard to reach.
Effective optimization techniques for targeted drug delivery require
understanding of the various pharmacokinetic processes involved.
Mathematical models that accurately describe these processes are a
valuable tool in the estimation of the properties of potential drug car-
rying materials, which can subsequently be used to forecast the dis-
tribution within specific regions of the body during delivery.

In this paper, a numerical framework that incorporates the physical
processes required to simulate various drug delivery systems is in-
troduced. The framework presented is a one-dimensional, multi-layer
model that is governed primarily by a diffusion-reaction equation, but
also allows for two types of coupled secondary state, chosen in-
dependently within each layer. The secondary state is governed by ei-
ther the Noyes–Whitney equation, as presented by Frenning et al. [1,2],
or the two-phase mathematical model presented by Pontrelli and de
Monte [3], for transdermal drug delivery. Our numerical model can be
applied to the modelling of drug release from a delivery device to the
target area with dissolution, absorption, and reversible binding taking
place in any of various layers involved, both in the delivery device and
target system.

One of the challenging aspects of numerical modeling in this context
is accurately considering the interface conditions and the associated
discontinuities in drug concentration that stem from both partitioning
and interfacial resistance or surface barriers. This is a challenging
subject that has been considered in the past by e.g. Hickson et al. [4]
and Rim et al. [5]. Rim et al. constructed a finite element model for
transdermal drug delivery, incorporating the effects of partitioning
between layers. Their approach is based on decomposing a partition
interface into two adjacent boundaries belonging to separate layers. A
mixed method is employed, whereby cross boundary normal flux and
concentrations at each boundary are modeled as independent variables.
McGinty and Pontrelli [6] recently presented a drug release-absorption
model based on finite differences that deals with discontinuities in
concentration caused by interlayer mass transfer conditions which de-
scribe interfacial resistance. Their model is based on a special difference
scheme developed by Hickson et al. [4]. The models developed by
Hickson et al. and Rim et al. both contain a concentration discontinuity
condition across the boundary. Gupta et al. [7] introduced a model
characterizing transport of a lipophilic solute across the cornea with
good comparisson with trans-corneal concentration profiles from ex-
periments. Results exhibit the importance of incorporating the effects of
partitioning and interfacial resistance between the epithelium, stroma
and endothelium layers as well as at outer boundaries. Pimenta et al.
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[8] successfully determined the partition coefficient of poly-hydro-
xyethylmethacrylate and silicone based hydrogels in combination with
three different drugs.

The work presented in this paper incorporates all the boundary ef-
fects mentioned above, including partitioning, mass transfer effects and
flux continuity, into a finite element formulation that eliminates the
need for additional variables or special schemes at the boundaries. The
approach is based on a two step construction. First, the finite element
scheme is constructed separately for each layer with arbitrary flux
conditions at the outer boundaries of each one. Following that, the layer
equations are assembled into a global scheme that ensures continuous
flux between layers while at the same time satisfying the interlayer
boundary conditions.

The capabilities of the numerical framework presented are demon-
strated, and the importance of incorporating both partitioning and mass
transfer effects is highlighted by constructing models describing dif-
ferent aspects of drug transport. The numerical framework is used to
simulate three cases. First, we simulate an moxifloxacin impregnated
intra-ocular lense in a Franz diffusion cell with three different thick-
nesses of lens material. The results are compared with experimental
data. The second case models a two phase transdermal system devel-
oped by Pontrelli and de Monte [3]. The third case is a reevaluation of
data presented in Snorradottir et al. [9], on transdermal drug delivery.
Results show the importance of having interlayer conditions that in-
clude both partition and mass transfer effects and that the proposed
framework can apply successfully to all the cases considered.

2. Model

The mathematical model presented below consists of two coupled
partial differential equations, describing possible drug related physical
processes taking place within a sequence of layers of different materials,
along with general boundary conditions capturing possible cross layer
mechanisms. The model is one-dimensional with respect to space.

2.1. Layer equations

Within a given layer α, of thickness Hα, demarked by points −xα 1 and
xα, we model two variables, an unbound fluid state Cα and a bound
secondary state Sα in terms of concentration (mg/cm3), with the fol-
lowing set of coupled partial differential equations
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where Dα is the diffusion coefficient (cm2/h), dα is a decay coefficient
within the layer, which may e.g. describe leakage or metabolic con-
sumption (1/h). The term bα(Sα(x, t), Cα(x, t)) relates the binding and
unbinding process. We use schematic diagrams, such as the one de-
picted in Fig. 1, to vizualize models. In order to describe the release
from solid drug systems we let Sα signify the solid state and choose the
Noyes–Whitney equation [10] to describe dissolution
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where kd,α is the dissolution rate coefficient of solid drug (cm/h), cs,α is
the solubility of the drug (mg/cm3), A0,α is the initial surface area of the
solid drug per unit volume (cm2/cm3), where the drug particles are
assumed implicitly by the model to retain their shape as the drug dis-
solves such that the surface area is proportional to the volume to the
power of 2/3 [11]. Initial concentrations of bound drug Sα(x, 0) and
unbound drug Cα(x, 0) must be specified in each layer. Expression (2)
can be made linear with respect to the secondary state variable by

introducing a new dependent variable ̂ =S x t S x t( , ) ( , )α α
1/3 as is done in

[9]. Then (1) becomes
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where ′ =k k A S x/ ( , 0)α α α α0, is the effective dissolution rate (cm3/
[mg h]). The presentation of the finite element approximation and the
time stepping procedure in this paper is based on the assumption that
the secondary state equation is linear with respect to the secondary
state variable, as well as the primary state equation being linear with
respect to the primary state variable. Note that Eq. (3) and the mod-
ification after Eq. (4) both satisfy this assumption. The binding and
unbinding process can be in the form of a two-phase equation

= − +b S x t C x t k S x t k C x t( ( , ), ( , )) ( , ) ( , )α α α α α1 2 (4)

where k1 and k2 are unbinding and binding rate coefficients (1/h), re-
spectively. In some applications it is appropriate to assume a con-
servation condition for binding by replacing the k2 coefficient with

′ −k S S x t( ( , )),max α α2 , where Smax,α denotes the density of binding sites
[6]. In this case the model is non-linear and the present finite element
method has to be modified by linearizing the equation in an appropriate
way.

2.2. General boundary conditions

Between layers we define general interlayer boundary conditions
with which we are able to describe the combined mechanisms of par-
titioning and mass transfer rate.

A partition between layers, occuring at xα, describes a concentration
discontinuity in equilibrium determined by the ratio Pα, refered to as
the partition coefficient (dimensionless). The ratio controls the jump in
concentration on one side of an interface proportionally with respect to
the concentration of the other side. The mass transfer coefficient Kα
(cm/h) controls the flux resistance across the interface possibly due to a
thin diffusion barrier. For interlayer boundary point xα, we have
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Low Kα slows the rate at which the ratio of concentration difference
between the layers approaches the ratio Pα. Sometimes it may be more
appropriate to express the right-hand side of (5) as

′ ′ − +K P C x t C x t( ( , ) ( , ))α α α α α α1

This can be realised by setting = ′ ′K K Pα α α and = ′P P1/α α. When needed
we shall refer to K and P as the layer α / layer +α 1 mass transfer and
partition coefficients respectively and refer to K′ and P′ as the layer

+α 1 / layer α mass transfer and partition coefficients. For simplicity,
we may refer to the flux at xα as Jα. Alternatively, we can express (5) as
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and refer to =−K Kα α and = = ′+K K P Kα α α α as the left and right rate
coefficients at =x x ,α cf. (4). At outer boundaries x0 and xN we define
general outer boundary conditions in a similar manner

− ∂
∂

= −

− ∂
∂

= −

=

=

D C x t
x

K C P C x t

D C x t
x

K C x t P C

( , ) ( ( , ))

( , ) ( ( , ) )

x x
b

N
N

x x
N N N N b N

1
1

0 ,0 0 1 0

,
N

0

(7)

K. Gudnason et al. Mathematical Biosciences 295 (2018) 11–23

12



Download English Version:

https://daneshyari.com/en/article/8877093

Download Persian Version:

https://daneshyari.com/article/8877093

Daneshyari.com

https://daneshyari.com/en/article/8877093
https://daneshyari.com/article/8877093
https://daneshyari.com

