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a b s t r a c t

Coalescent simulations are a widely used approach for simulating sample genealogies, but can become
computationally burdensome in large samples.Methods exist to analytically calculate a sample’s expected
frequency spectrum without simulating full genealogies. However, statistics that rely on the distribution
of the length of internal coalescent branches, such as the probability that twomutations of equal size arose
on the same genealogical branch, have previously required full coalescent simulations to estimate. Here,
we present a sampling method capable of efficiently generating limited portions of sample genealogies
using a series of analytic equations that give probabilities for the number, start, and end of internal
branches conditional on the number of final samples they subtend. These equations are independent of
the coalescent waiting times and need only be calculated a single time, lending themselves to efficient
computation.We compare ourmethodwith full coalescent simulations to show the resulting distribution
of branch lengths and summary statistics are equivalent, but that for many conditions our method is at
least 10 times faster.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction1

In recent years the declining costs of human sequencing and2

genotyping have facilitated increasingly large studies. Sequencing3

experiments with tens of thousands of samples (Coventry et al.,4

2010; Nelson et al., 2012; Tennessen et al., 2012), and genotyping5

projects combining hundreds of thousands of samples (Teslovich et6

al., 2010; Morris et al., 2012; Berndt et al., 2013) are now common.7

The data observed in such large studies is frequently compared8

with simulated data generated according to theoretical models to9

test hypotheses about demography or disease architecture. Coa-10

lescent simulations are a common and widely used approach for11

generating such simulated data (Nelson et al., 2012; Ferreira et12

al., 2013; Gazave et al., 2014). The coalescent (Kingman, 1982) is13

a model which traces the ancestry of a present day sample back-14

wards through time until reaching themost recent common ances-15

tor of the entire sample. Researchers have expanded the coalescent16

to model a range of population histories and conditions (Kaplan17

et al., 1988; Takahata and Slatkin, 1990; Griffiths and Tavarè,18

1994; Neuhauser and Krone, 1997). However, for large samples,19

coalescent simulations can become computationally burdensome,20

especially in Monte-Carlo applications when many datasets have21
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to be generated. Here, we propose a sampling method that allow 22

us to generate individual branch lengths and configurations in 23

Kingman coalescent genealogies, and which allow us selectively 24

generate limited portions of sample genealogies. This approach 25

is particularly effective for research questions that need consider 26

only limited portions of the full genealogies generated by coa- 27

lescent simulations. For example, the study of very rare variants 28

found to be abundant in human populations (Nelson et al., 2012; 29

Tennessen et al., 2012), concerns only external or nearly external 30

genealogical branches. 31

Ourmethod relies on a set of equations that give the probability 32

of a genealogical branch starting and ending at specific coalescent 33

events. To derive these probabilities we first define the length 34

and size of a branch. The structure of a coalescent genealogy is 35

a bifurcating tree, with internal nodes that represent coalescent 36

eventswhere two lineagesmerge at a commonancestor. Therefore, 37

a genealogical branch begins either at an external node along the 38

tips of the tree or at a subsequent internal coalescent event, and 39

then ends at a coalescent event closer to the root of the tree. The 40

time between its beginning and ending events is the length of a 41

branch. The size of a branch is a count of the number of external 42

nodes in the final sample that it subtends (Fu, 1995). Branch size 43

corresponds to the number of derived alleles that would appear 44

in the final sample were a mutation event to occur along the 45

branch’s length. With a constant size population, where waiting 46
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times between coalescent events are independent, the combina-1

tion of these equations provides an explicit probability distribution2

function for individual branch lengths. Directly sampling from this3

explicit formula is computationally challenging. Herewe introduce4

a recursive calculation that gives the distribution of the number5

of branches with a given size in a genealogy. We show that these6

recursive computations combined with storing reusable interme-7

diate results and sampling from simple exponential distributions8

facilitate a rapidmethod for sampling selected portions of genealo-9

gies.10

Our approach of developing an algorithm targeted at a spe-11

cific feature of the coalescent has previously been taken in many12

contexts. Simulation methods grounded in coalescent theory and13

designed to efficiently handle recombination (McVean and Cardin,14

2005; Marjoram and Wall, 2006), selection (Fearnhead, 2006), or15

the number of ancestral lineages remaining (Blum and Rosenberg,16

2007; Jewett and Rosenberg, 2014) have all been proposed. Previ-17

ous work on the distribution of internal branches of the Kingman18

coalescent was focused on their summed length or the proportion19

of a genealogy with a given size (Fu and Li, 1993; Fu, 1995;20

Griffiths and Tavarè, 1998; Wooding and Rogers, 2002; Polanski21

and Kimmel, 2003; Dahmer and Kersting, 2015). The proportion of22

a tree with a given size was of interest because under the infinite23

sites mutation model, the number of segregating sites observed in24

a sample with a given number of derived alleles is a function of the25

total length of branches with a size equal to the number of derived26

alleles. Fu and Li (1993) presented the expectation and variance27

of the total summed length of both external and internal branches28

along a Kingman coalescent without recombination. Griffiths and29

Tavarè (1998) expanded on this work to derive an expression30

for the probability of a mutation having a specific number of31

descendants in the final sample, even in samples from populations32

with variable past sizes. Jenkins and Song (2011) built on Griffiths33

and Tavaré’s work by considering allele configurations with two34

separatemutation events, and they extended theirwork to variable35

size populations in 2014 (Jenkins et al., 2014). In related work36

Ferretti et al. (2016) was able to derive closed expressions for37

the joint frequency spectrum of two linked sites. Fu (1995) gave38

expressions for the expectations, variances, and covariances for a39

sample’s frequency spectrum. Efficient methods for modeling the40

total time in a sample’s genealogy with a given size have been41

developed (Wooding and Rogers, 2002; Polanski and Kimmel,42

2003; Polanski et al., 2003). However, themethods ofWooding and43

Rogers (2002) and Polanski et al. (2003) fail to model individual44

branch lengths and their topology. The topology of a genealogy is45

where the correlation between observed mutations arises. These46

correlations can contain information about demography lacking47

from the frequency spectrum (Gutenkunst et al., 2009) and influ-48

ence the outcome of tests for neutral evolution (Ledda et al., 2015).49

In the absence of recombination, this correlation is equivalent to50

the linkage disequilibrium between mutations, and it has been51

shown that patterns of linkage disequilibrium between very rare52

variants can provide information about departures from Wright–53

Fisher neutrality (Wall, 1999), including recent population growth54

rates (Reppell et al., 2014). With the focus in our work on in-55

dividual genealogical branches rather than their summed length,56

we more closely build on the findings of Rosenberg (2006), which57

derived the expectation and variance for the number of internal58

branches with a specific size.59

Here our calculations build a sampling framework that can60

quickly generate portions of a genealogy with a specific size.61

Considering all coalescent events on a tree, we integrate over all62

possible starts and ends for a branch of a given size. Conditional on63

the start and end of the branch we then calculate the probability64

that the branch has a given length. For a constant size popula-65

tion, we show that our work gives rise to an explicit probability66

distribution function for branch lengths. As this formula becomes 67

computationally intractable as sample size grows, we introduce 68

a computationally more efficient algorithm that recursively cal- 69

culates all probabilities of start and end points and evaluates the 70

conditional probability of branch length by Monte Carlo sampling. 71

Wecompare our samplingmethodwith full coalescent simulations 72

for a range of sample sizes and demonstrate it performs up to 73

10 times faster, and show that as long as the ratio of branch size 74

to sample size is moderate (<0.15) it produces branches with an 75

equivalent length distribution and summary statistics. 76

2. Methods 77

In this section we first provide the full probability distribution 78

function for genealogical branches under a model of constant pop- 79

ulation size, and then subsequently derive its components, notably 80

in 2.2 and 2.3. In Section 2.4 the distribution of the number of 81

branches with a given size in a genealogy is derived, which we 82

combine with the proceeding work to propose a sampling method 83

that can efficiently generate selected portions of genealogies. In 84

Section 2.5 we combine the elements of the preceding sections 85

into our proposed algorithm, which we label topology free sam- 86

pling. Section 2.6 gives summary statistics we use to evaluate our 87

method, and Section 2.7 gives details of the open source software 88

implementation of our method and the simulations we use in this 89

text. 90

2.1. A probability distribution function for coalescent branch lengths 91

in a model with constant population size 92

The probability that a coalescent tree branch of size j has length 93

ℓ is the product of three probabilities: the probability that the 94

branch begins at specific coalescent event, then, conditional on its 95

starting event, the probability that it ends at a specific coalescent 96

event, and finally, conditional on its starting and ending events, the 97

probability that the intervening coalescent times sum to ℓ. For the 98

random variable Lj, the length of a branch with size j: 99

P(Lj = Length ℓ) 100

=

∑
Start

∑
End

P(Length ℓ|Start, End)P(End|Start)P(Start|Size = j) 101

(1) 102

P(End|Start) and P(Start|Size = j) are given in Sections 2.2 and 2.3, 103

respectively. For a constant size population, the length of a branch 104

follows a hypoexponential distribution: it is a sum of coalescent 105

waiting times, each an exponential random variable with a unique 106

rate. The rates that define the hypoexponential distribution are 107

conditional on a branch’s starting and ending coalescent events 108

which define the number of ancestral lines remaining during the 109

branch’s duration. If we label coalescent events k ∈ 1, 2, . . . , n−1 110

such that at event k, n − k + 1 ancestral branches are reduced by 111

1 to n − k ancestral branches we can write the exact probability 112

distribution of branch lengths with size j as 113

P(Lj = ℓ)

=

n−2∑
k=1

PStart (k|j)

×

n−1∑
b=k+1

⎡⎣PEnd(b|k, j)
b∑

z=k+1

e−

(
n−z+1

2

)
l ∏z

v=k+1

( n−v+1
2

)∏b
v=k+1,v ̸=z

(( n−v+1
2

)
−

( n−z+1
2

))
⎤⎦
(2) 114

where PStart (k|j) is the probability a branch with size j begins at 115

coalescent event k (Eq. (4)), PEnd(b|k, j) is the conditional proba- 116

bility a branch with size j that began at event k, ends at event b 117
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